SAMPLE OF CO-PO MAPPING

Department of Applied Science & Humanities

PO

- **1. Engineering knowledge:** Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- 2. Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- 3. Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- 4. Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- **5. Modern tool usage:** Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
- **6. The engineer and society:** Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- 7. Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- **8.** Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- 9. Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- 10. Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- 11. Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- 12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Director
R.D. Engineering College

B. Tech. First Year, Semester- I
(All Branches except Agriculture Engineering and Biotechnology)

5N	Subject Code	Subject Name	Туре	ory						Evaluation			
1				Category	Pe	eriod	d		ional onent	Sessional (SW) (TS/PS)	End Semester Examination (ESE)	Total	Credit
1					L	T	Р	СТ	TA	CT+TA	TE/PE	SW+ESE	Cr
1.	BAS101/ Engineering Physics/ BAS102 Engineering Chemistry		Т	BS	3	1	0	20	10	30	70	100	4
2.	BAS103	Engineering Mathematics-I	Т	BS	3	1	0	20	10	30	70	100	4
3.	BEE101/ BEC101	Fundamentals of Electrical Engineering/ Fundamentals of Electronics Engineering	Т	ES	2	1	0	20	10	30	70	100	3
4.	BCS101/ BME101	Programming for Problem Solving/ Fundamentals of Mechanical Engineering	Т	ES	2	1	0	20	10	30	70	100	3
5.	BAS104/ BAS105	Environment and Ecology/ Soft Skills	Т	BS/ HS	3	0	0	20	10	30	70	100	3
6.	BAS151/ BAS152	Engineering Physics Lab/ Engineering Chemistry Lab	P	BS .	0	0	3	*	50	50	50	100	1
7.	BEE151/ BEC151	Basic Electrical Engineering Lab/ Basic Electronics Engineering Lab	P	ES	0	0	3	-	50	50	50	100	1
8.	BCS151/ BAS155	Programming for Problem Solving Lab/ English Language Lab	Р	ES/ HS	0	0	3	-	50	50	50	100	1
9.	BCE151 / BWS151	Engineering Graphics & Design Lab/ Workshop Practice Lab	Р	ES	0	1	3	-	50	50	550	900	2 22

Abbreviation Used:

BS: Basic Science Course

ES: Engineering Science Course

HS: Humanities and Social Science Course

VA: Value Added Course

B. Tech. First Year, Semester- II

(All Branches except Agriculture Engineering and Biotechnology)

									E	valuatio	Scheme	,	
SN	Subject Code	Subject Name	Туре	Category	F	Perio	od	1,550,50	ssional nponent	Sessiónal (SW) (TS/PS)	End Semester Examination (ESE)	Total	Credi
					L	Т	Р	СТ	TA	CT+TA	TE/PE	SW+ESE	Cr
1.	BAS202/ BAS201	Engineering Chemistry / Engineering Physics	Т	BS	3	1	0	20	10	30	70	100	4
2.	BAS203			BS	3	1	0	20	10	30	70	100	4
3.	BEC201/ BEE201	Fundamentals of Electronics Engineering / Fundamentals of Electrical Engineering	Т	ES	2	1	0	20	10	30	70	100	3
4.	BME201/ BCS201	Fundamentals of Mechanical Engineering/ Programming for Problem Solving	Т	ES	2	1	0	20	10	30	70	100	3
5.	BAS205/ BAS204	Soft Skills / Environment and Ecology	Т	HS/ BS	3	0	0	20	10	30	70	100	3
6.	BAS252/ BAS251	Engineering Chemistry Lab / Engineering Physics Lab	Р	BS	0	0	3	-	50	50	50	100	1
7.	BEC251/ BEE251	Basic Electronics Engineering Lab/ Basic Electrical Engineering Lab	P	ES .	0	0	3	-	50	50	50	100	1
8.	BAS255/ BCS251	English Language Lab / Programming for Problem Solving Lab	Р	HS/ ES	0	0	3	-	50	50	50	100	1
9.	BWS251/ BCE251	Workshop Practice Lab / Engineering Graphics & Design Lab	Р	ES	0	1	3		50	50	50	100	2
10.	BVA251/ BVA252	Sports and Yoga / NSS	P	VA	0	0	3		100	*100		*100	0
					13	5	12+ 3*			350+ *100	550	900+ *100	22

^{*}Compulsory Qualifying Audit Course

Abbreviation Used:

BS: Basic Science Course

ES: Engineering Science Course

HS: Humanities and Social Science Course

VA: Value Added Course

Summer Internship (4-week) / NPTEL Course (4-week) during summer break after Semester-II and same will be assessed/evaluated in the Semester-III

Director R.D. Engineering College Duhai, Ghaziabad

Page 3 of 40

R.D. ENGINEERING COLLEGE, GHAZIABAD DEPARTMENT OF APPLIED SCIENCES & HUMANITIES AVERAGE OF PROGRAM OUTCOMES (2022-2023) S.N. YEAR SEMESTER Subjects With Codes Program Outcomes

			1000年1月1日 1100年		MYLIMUI	OF PROG	ILWW OO	ICOMES (2	UZZ-ZUZ	3)					
S.N.	YEAR	SEMESTER	Subjects With Codes					Progra	am Outco	mes		T. YEL	7.50		
			oubjects with codes	P01	PO2	PO3	PO4	PO5	P06	P07	PO8	PO9	PO10	P011	P012
	3		BAS101/BAS201	2.8	2	1	1	2.4	1-	1		1.6	1	2	1
	l ú		BAS102/BAS202	2.8	2.2	2.2	1.8	2	1.8	1.2	-	1	-	·	1
	(2022		BAS103	3	3	2.4	2	1.2	1.25	1	-		-	1.2	2
	(50	Z	BAS203	3	3	2	2	3	1.6	2	-	1.6	:	1	1.6
1		E	BEE101/BEE201	2.6	2.5	-	2		1	3		-	-	1.2	2.6
•	yeal	O C	BEC101/BEC201	3	3	2	1	1	1.5	1.5	1.5	-	2	1 	2
	=	9	BCS101/BCS201	2.6	2.4	2	1.3	1	2	-	1	2.4	1	1	3
	.Tech		BME101/BME201	3	1.8	1.8	1.2	-	1.8	-	-	-2	-		1.6
	B.T		BAS104/BAS204	2	1.5	1	2	-	1.8	2	1.4	-	-	-	3
			+ BAS105/BAS205	1.8	2	1.5	1.4	-	1.6	1.5	2	2	2.3	1.4	1.6
- v - 1)	AVERA	3E		2.66	2.34	1.77	1.57	1.77	1.59	1.65	1.48	1.72	1.58	1.30	1.94

	DEPARTMENT OF APP		
ACI	TON TAKEN ON IDENTIFIE	D GAP OF PROGRAM	OUTCOMES (2022-2023)
S.N.	Gap Identified	Relevent PO	Action Taken
1	NO GAP IDENTIFIED		

R.D. ENGINEERING COLLEGE GHAZIABAD DEPARTMENT OF APPLIED SCIENCES AND HUMANITIES COURSE OUTCOME (2022-23)

BAS101/201: ENGINEERING PHYSICS

Course Outcome No.	Course Outcomes Statement
CO1	To explain the distribution of energy in black body radiation and to understand the difference in particle and wave nature with explanation of Compton effect and Schrodinger wave equation.
CO2	To understand the concept of displacement current and consistency of Ampere's law and also the properties of electromagnetic waves in different medium with the use of Maxwell's equations.
СО3	To understand the behavior of waves through various examples/applications of interference and diffraction phenomenon and the concept of grating and resolving power.
CO4	To know the functioning of optical fiber and its properties and applications. To understand the concept, properties and applications of Laser.
CO5	To know the properties and applications of superconducting materials and nano materials.

		Mappi	ng of C	ourse o	utcome	s with	Program	n outco	illes			
		Program Outcomes(PO)										
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	1	2	-	1	H	1	1	2	1
CO2	3	2	-	1	3	-	1	-	2	1	2	1
CO3	2	2	-	1	2	E	1	3.	2	1	2	1
CO4	3	2	1	1	2	-	1	-	1	1	2	1
CO5	3	2	1	1	3	-	1	-	2	1	2	1
Course Average	2.8	2.0	1.0	1.0	2.4	-	1.0	-	1.6	1.0	2.0	1.0

3 - High; 2 - Medium; 1 - Low

R.D. ENGINEERING COLLEGE GHAZIABAD B.TECH I YEAR

DEPARTMENT OF APPLIED SCIENCES AND HUMANITIES ENGINEERING CHEMISTRY(BAS102/BAS202) SESSION :2022-23

Course Outcome	Statement
CO1	Get an understanding of the theoretical principles of chemistry of molecular structure, bonding and properties, Chemistry of advanced materials (liquid crystals, Nanomaterials, Graphite & Fullerene) as well as the Principles of Green Chemistry.
CO2	Apply the fundamental concepts of determination of structure with various spectral techniques and stereochemistry.
CO3	Utilize the theory of construction of electrodes, batteries and fuel cells in redesigning new engineering products and categorize the reasons for corrosion and study methods to control corrosion and develop understanding of Chemistry of Engineering materials (Cement).
CO4	Develop understanding of the sources, impurities and hardness of water, apply the concepts of determination of calorific values and analyze the coal.
CO5	Develop the understanding of Chemical structure of polymers and its effect on their various properties when used as engineering materials. Understanding the applications of specific polymers and Chemistry applicable in industrial process.

		Map	ping of	Cours	e Outco	mes w	ith Pro	gram C	Outcome	S		
			BAS	102/BA	S202 (E	Engine	ering C	hemisti	y)			3
1027					Pı	rogram	Oouc	omes (P	O)			
Course Outcome	PO1	PO2	PO3	PO4	PO5	PO6	PO 7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	3	2	2	2	2	-	1	-	-	1
CO2	3	3	2	2	2	2	1	-	1	-	-	1
CO3	3	2	2	1	2	1	1	- '	1	-	-	1
CO4	3	2	2	2	2	2	1	-	1	-	-	1
CO5	2	2	2	2	2	2	1	-	1	-	-	1
Course Average	2.8	2.2	2.2	1.8	2.0	1.8	1.2	-	1.00	-	-	1.0

3 - High; 2 - Medium; 1 - Low

COURSE OUTCOME (2022-23)

BAS 103: Engineering Mathematics I

CO	Course Outcomes Statements
CO1	Understand the concept of complex matrices, Eigen values, Eigen vectors and apply the concept of rank to evaluate linear simultaneous equations.
CO2	Remember the concept of differentiation to find successive differentiation, Leibnitz Theorem, and create curve tracing, and find partial and total derivatives
CO3	Applying the concept of partial differentiation to evaluate extrema, series expansion, error approximation of functions and Jacobians.
CO4	Remember the concept of Beta and Gamma function; analyze area and volume and Dirichlet's theorem in multiple integral.
CO5	Apply the concept of Vector Calculus to analyze and evaluate directional derivative, line, surface and volume integrals.

Mapping	of	Course	outcomes	with	Program	outcomes
---------	----	--------	----------	------	----------------	----------

KAS 103: Engineering Mathematics I

					Pı	rogram	outcom	es(PO)			×	PO11 PO12									
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12									
CO1	3	3	3	2	2	2	1	-	-		2	2									
CO2	3	3	1	1	1	-	1	-	÷	28	1	2									
CO3	3	3	2	1	1	1	Ī	-	-	-	_ 1	2									
CO4	3	3	3	3	1	1	1	-	-	-	1	2									
CO5	3	3	3	3	1	1	1	(=)	-	-	1	2									
Average	3	3	2.4	2.0	1.2	1.3	1.0	-	-	-	1.2	2.0									

COURSE OUTCOME (2022-23)

BAS 203: Engineering Mathematics II

CO	Course Outcomes Statements
CO1	Remember the concept differentiation to evaluate LDE of nth order with constant coefficient and LDE with variable coefficient of 2nd order.
CO2	Understand and apply the concept of Laplace Transform to evaluate differential equations
CO3	Understand the concept of convergence to analyze the convergence of series and expansion of the function for Fourier series
CO4	Apply the concept of analyticity, Harmonic function and create the image of function applying conformal transformation
CO5	Apply the concept of Cauchy Integral theorem, Cauchy Integral formula, singularity and calculus of residue to evaluate integrals.

Mapping of	Course	outcomes with	Program	outcomes
------------	--------	---------------	----------------	----------

KAS 203: Engineering Mathematics II

					Pr	ogram	outcome	es(PO)				
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2	2	3	2	2		2		1	2
CO2	3	3	2	2	3	2	2	-	2	-0	1	2
CO3	3	3	2	2	3	2	2		2	-	1	2
CO4	3	3	2	2	3	1	2	-	1	-	1	1
CO5	3	3	2	2	3	1	2	-	1	7.	1	1
Average	3	3	2	2	3	1.6	2	-	1.6	-	1.2	1.6

COURSE OUTCOME (2022-23)

BEE101 / BEE201: FUNDAMENTALS OF ELECTRICAL ENGINEERING

CO	Course Outcomes Statements
CO1	Apply the concepts of KVL/KCL and network theorems in solving DC circuits.
CO2	Analyze the steady state behaviour of single phase and three phase AC electrical circuits.
CO3	Identify the application areas of a single phase two winding transformer as well as an auto transformer and calculate their efficiency. Also identify the connections of a three phase transformer.
CO4	Illustrate the working principles of induction motor, synchronous machine as well as DC machine and employ them in different area of applications.
CO5	Describe the components of low voltage electrical installations and perform elementary calculations for energy consumption.

		Map	ping o	f Cour	se out	comes	with	Progra	am ou	tcomes		
	BEI	E101/	BEE20	1: FUN	DAME	NTALS	OF EL	ECTRIC	CAL EN	IGINEER	RING	
Program outcomes(PO)											Ī	
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	-	-	-		3	-	-	-	2	2
CO2	3	2	-	-	8 a		3	-	-	-	1	2
CO3	3	3	-	2	-	-	3	-	-	-	1	2
CO4	3	3	-	2	-	- ,	3	-	-	-	1	3
CO5	2		-	-	-	1	3	-	-	-	1	3
Average	2.6	2.5	-	2		1	3	-	-	-8	1.2	2.6

Course Outcome (2022-23)

BEC101/201: Fundamentals of Electronics Engineering

СО	Course Outcomes Statement
CO1	Describe the concept of PN Junction and devices.
CO2	Explain the concept of BJT, FET and MOFET.
CO3	Apply the concept of Operational amplifier to design linear and non-linear applications.
CO4	Perform number systems conversions, binary arithmetic and minimize logic functions.
CO5	Describe the fundamentals of communication technologies.

Mapping of Course Outcomes with Program Outcomes

BEC101/201: Fundamentals of Electronics Engineering

	Program Outcome (PO)												
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	3	2	1	1	-	_	-	-	-	_	2	
CO2	3	3	2	1	1	=	-	-	:-	-	-	2	
CO3	3	3	2	1	1	1	1	1	-	_	=	2	
CO4	3	3	2	1	1	-	=	-	-	-	-	2	
CO5	3	3	2	1	1	2	2	2		2	_	2	
Average	3.0	3.0	2.0	1	1.0	1.5	1.5	1.5	-	2		2.0	

R.D. ENGINEERING COLLEGE GHAZIABAD B.TECH I YEAR

DEPARTMENT OF APPLIED SCIENCES AND HUMANITIES PROGRAMMING FOR PROBLEM SOLVING

SESSION: 2022-23

Semester: I &II

Subject Code: BCS 101/201

Subject Name: Programming For Problem Solving

CO	Course Outcomes Statements
CO1	To Develop Simple Algorithms for Arithmetic and Logical Problems.
CO2	ToTranslate ther Algorithm to Programs & Execution(In C Language)
CO3	To Implement Conditional Branching, Iteration and Recursion.
CO4	To Decompose a Problem into Functions and Synthesize a Complete Program Using Divide and Conquer
CO5	To Use Arrays, Pointers and Structures to Develop Algorithms and Programs.

Mapping of Course outcomes with Program outcomes BCS 101/201 - Programming For Problem Solving Program Outcomes(PO) CO PO-5 PO-1 PO-2 PO-3 PO-4 PO-6 PO-7 PO-8 PO-9 PO-10 PO-11 PO-12 CO1 2 2 3 CO22 2 1 3 1 1 3 2 2 CO3 2 1 2 2 2 CO₄ 3 3 2 1 2 2 1 1 1 3 3 3 2 2 CO₅ 1 2 -1 1 3 2.6 2.4 2.0 1.3 1.0 2.40 2.0 Course Average 3.0

COURSE OUTCOME (2022-23)

BME101 / BME201: FUNDAMENTALS OF MECHANICAL ENGINEERING

CO	Course Outcomes Statements
CO1	Apply the concept of force resolution and stress and strain to solve basic Problems.
CO2	Understand the construction details and working of internal combustion engines, electric vehicle, and hybrid vehicles.
CO3	Explain the construction details and working of refrigerator, heat pump and air conditioner.
CO4	Understand fluid properties, conservation laws and hydraulic machinery used in real life.
CO5	Understand the working principle of different measuring instrument and mechatronics with their advantage and industrial application.

		Map	ping o	f Cou	rse out	tcomes	with	Progr	am ou	tcomes	*	
	ВМЕ	101 / I	BME20	1: FUN	DAME	NTALS	OF M	ECHAI	NICAL	ENGINE	ERING	
	Program outcomes(PO)											T
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2	2	-	2	-		. =		-	2
CO2	3	1	2	1	-	2	-	-	-	-	-	1
CO3	3	2	2	1		1	*	-	-	-	-	2
CO4	3	2	1	1	-	2	-	_	-	-	-	2
CO5	3	2	2	1	-	2	-	n=	-	-	-	1 .
Average	3	1.8	1.8	1.2	-	1.8	-		_	-	_	1.6

COURSE OUTCOME (2022-23)

$BAS\ 104\ /\ BAS\ 204$: Environment and Ecology

СО	CO Statement
CO1	Aims and objectives of environmental education emphasize the relationship between man and the environment and educate young people about the importance of nature and the environment.
CO2	Environmental education aims to impart ecological knowledge and promote environmentally conscious behaviour towards nature.
CO3	It encourages young minds to take responsibility for protecting the natural environment protection through information and knowledge and to develop environmental awareness.
CO4	Incidentally, promoting awareness and a sense of respect for nature leads to a comprehensive understanding of the environment and a reasonable attitude towards protecting it.
CO5	The focus of environmental education is Awareness, Knowledge, Attitude, Skills, Capacity Building and Participation.

		Maj	pping o	f Cours	se Outc	omes w	ith Pro	gram (Outcom	es		
	BAS 104 / BAS 204: Environment and Ecology											
PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
co												
CO1	1	2	1	-	-	2	2	1 .		-	-	3
CO2	2	1	-	-	~	1	2	1	-	- 19	-	3
CO3	3	2	1	-	-	2	2	1		-	12	3
CO4	2	1	1	2	-	2	2	2	-	(-	s-	3
CO5	2	-	-	-		2	2	2	21	-	182 NE	3
Average	2.0	1.5	1.0	2.0	-	1.8	2.0	1.4	-	-	-	3.0

COURSE OUTCOME (2022-23)

BAS 105: SOFT SKILLS

CO	Course Outcomes Statements
CO1	Apply the basic grammar in general conversation and writing.
CO2	Understanding the value of listening and its types along with different speaking styles.
СОЗ	Understanding different reading styles and concept. Getting acquaintance with official writing skills.
CO4	Practically and theoretically knowing the importance of presentation and interaction skills and it use.
CO5	Knowing what is required to be fit for the industry including mental health, stress Management and leadership skills.

Mapping of Course outcomes with Program outcomes
BAS 105: SOFT SKILLS

		Program outcomes(PO)												
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	3	-	-	-	2	1	1	1	3	-	1	-		
CO2	1	-	1	2	-	1	2	1	2	-	8=	3		
CO3	3	2	-	-	-	1	2	1	3	2	3	40		
CO4	1	-	2	1	-	1	-	1	2	- 1	1	3		
CO5	2	2	2	-	2.	1	-	1	3	-	-	3		
Average	_	1	-	-	2	1	1_	21	3	2	1	-		

R.D. ENGINEERING COLLEGE GHAZIABAD B.TECH I YEAR

DEPARTMENT OF APPLIED SCIENCES AND HUMANITIES PROGRAMMING FOR PROBLEM SOLVING LAB

SESSION: 2022-23

Semester: I &II

Subject Code: BCS 151/251

Subject Name: PROGRAMMING FOR PROBLEM SOLVING LAB

co	Course Outcomes Statements
CO1	Able to implement the algorithms and draw flowcharts for solving Mathematical and Engineering Problems
CO2	Demonstrate an understanding of computer programming language concepts.
CO3	Ability to design and develop Computer programs, analyzes, and interprets the concept of pointers, declarations, initialization, operations on pointers and their usage.
CO4	Able to define data types and use them in simple data processing applications he/she must be able to use the concept of array of structures.
05	Develop confidence for self-education and ability for life-long learning needed for Computer language.

		Map	ping of (Course o	utcomes	with Pr	rogram o	outcomes				
	BC	S 151/25	1 PROC	GRAMM	ING FO	R PRO	BLEM S	OLVINO	G LAB			
CO	CO Program outcomes(PO)											
CO	PO-1	PO-2	PO-3	PO-4	PO-5	PO-6	PO-7	PO-8	PO-9	PO-10	PO-11	PO-12
CO1	3	3	2	1	1	-	-	-	χ -	-	-	2
CO2	3	3	2	1	1	-	-	-	i.=	2	2	2
CO3	3	3	2	1	1	-	-	-	:-	-	-	2
CO4	3	3	3	1	1	-	-	7=	1-	-	-	2
CO5	3	3	3	1	1	-	-	-		3	3	2
Course Average	3	3	2.4	1	1	-	-	_		2.5	2.5	2

R.D. ENGINEERING COLLEGE GHAZIABAD B.TECH I YEAR

DEPARTMENT OF APPLIED SCIENCES AND HUMANITIES ENGINEERING CHEMISRTRY LAB(BAS152/BAS252) SESSION :2022-23

Course Outcome	Statement									
CO1	Get an understanding of the use of different analytical instruments.									
CO2	Measure the molecular / system properties such as surface tension, viscosity, conductance of solution, chloride and iron content in the water.									
CO3	Measure the hardness and alkalinity of the water.									
CO4	Know the fundamental concepts of the preparation of phenol formaldehyde & urea formaldehyde resin, adipic acid and Paracetamol.									
CO5	Estimate the rate constant of reaction.									

		N	Aapping	g of Cou	rse Out	comes wi	th Prog	ram Ou	tcomes									
10			BAS1	52P/BA	S252P (1	Engineer	ing Che	mistry l	Lab)			8						
						Progra	m Oouc	omes (P	O)									
Course Outcome	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12						
CO1	3	2	1	1	2	1	1				-	1						
CO2	3	2	1	2	2	1	1		-	-	-	1						
CO3	3	3	1	2	2	1	1	9	-	-	-	1						
CO4	2	2	1	1	2	1	1		-		1.51	1						
CO5	2	2			1	1	1		-	-	-	20 196						
Course Average	2.6	2	1	1.5	1.8	1.0	1.0	-	2	_	1-	1						

3 – High; 2 – Medium; 1 – Low

COURSE OUTCOME (2022-23)

BEE151 / BEE251: -BASIC ELECTRICAL ENGINEERING LAB

CO	Course Outcomes Statements
CO1	Conduct experiments illustrating the application of KVL/KCL to DC electrical circuits.
CO2	Demonstrate the behavior of AC circuits connected to single phase AC supply and measure power in single phase as well as three phase electrical circuits
CO3	Perform experiment illustrating BH curve of magnetic materials.
CO4	Calculate efficiency of a single phase transformer and DC machine.
CO5	Perform experiments on speed measurement and reversal of direction of three phase induction motor and Identify the type of DC and AC machines based on their construction.

		Map	ping o	f Cour	se out	comes	with	Progra	am ou	tcomes			
		BEE1	.51 / BI	EE251:	-BASI	C ELEC	TRICAL	. ENGI	NEERII	NG LAB			
		Program outcomes(PO)											
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	2	2	1	-	-		3	_	-	-	s ≡	2	
CO2	3	2	2	-	-		3	22	-	-	-	2	
CO3	3	2	2	2	-,	-	3	-	-	-	-,	2	
CO4	3	3	2	2	-	-	3	-	-	-	-	3	
CO5	2	2	1	192	-	1	3	=	-	\ <u>-</u>	-	3	
Average	2.6	2	1.6	2	-	1	3	-	-		-	2.6	

COURSE OUTCOME (2022-23)

BWS151 / BWS251: - WORKSHOP PRACTICE LAB

CO	Course Outcomes Statements
CO1	Use various engineering materials, tools, machines and measuring equipments.
CO2	Perform machine operations in lathe and CNC machine.
CO3	Perform manufacturing operations on components in fitting and carpentry shop.
CO4	Perform operations in welding, moulding, casting and gas cutting.
CO5	Fabricate a job by 3D printing manufacturing technique

		Map	ping o	f Cou	rse out	tcomes	with	Progr	am ou	tcomes			
	BWS151 / BWS251: - WORKSHOP PRACTICE LAB												
	Program outcomes(PO)												
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	-	-	-	-	-	2	2	2	3	1	1	2	
CO2	s = .	- 1	=	34	-	2	2	2	3	1	1	3	
CO3	-	= 9	-	-	-	2	2	2	3	1	1	2	
CO4	-	-::	-		-	2	2	2	3	1	1	2	
CO5	-	-	-	-	-	2	2	2	3	1	1	3	
Average	-		-	1-	i.	2	2	2	3	1	1	2.4	

SAMPLE OF CO-PO MAPPING

Department of Civil Engineering

COURSE OUTCOME (2022-23)

CIVIL -2ND YEAR

KOE033: Energy Science & Engineering

CO Statement
To know about different Energy and its Usage
To know about Nuclear Energy and its Usage
To know about Solar Energy and its Usage
To know about Conventional & non-conventional energy source and its Usage
To know about Systems and Synthesis and its Usage

			Mapping	of Cour	se outo	omes v	vith Pro	gram o	utcom	es		·	
			К	DE033:	Energy	Scienc	e & En	gineerii	ng				
	Program Outcomes(PO)												
со	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	
CO1	2	2	2	2	2	1	-	-	-		-	2	
CO2	3	2	2	2	2	1	-	-	-	-	-	2	
CO3	2	2	2	2	2	1	-	-	-	1-1	-	2	
CO4	2	2	2	2	2	1	-	-	-:)=:	1 2=	2	
CO5	2	2	2	2	2	1	-	-	_	-	-	2	
Average	2.2	2	2	2	2	1	-		-	-	-	2	

COURSE OUTCOME (2022-23)

CIVIL -2ND YEAR

KVE 301: Universal Human Value

СО	CO Statement
CO1	Understand the significance of value inputs in a classroom, distinguish between values and skills, understand the need, basic guidelines, content of value education, explore the meaning of happiness and prosperity and do a correct appraisal of the current scenario in the society
CO2	Distinguish between the Self and the Body; understand the meaning of Harmony in the Self the Coexistence of Self and Body.
CO3	Understand the value of harmonious relationship based on trust, respect and other naturally acceptable feelings in human-human relationships and explore their role in ensuring a harmonious society.
CO4	Understand the harmony in nature and existence, and work out their mutually fulfilling participation in the nature.
CO5	Distinguish between ethical and unethical practices, and start working out the strategy to actualize a harmonious environment wherever they work.

		M	lapping	of Cours	se outco	omes w	ith Pro	gram o	utcome	s											
	7			KVE 30	1: Univ	ersal H	uman V	alue													
со					Prog	ram Ou	tcomes(PO)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12									
CO1	-	-	-	-	2	1	1	1	3		1										
CO2	-	-	-	S=0	-	1	-	1	3	-	-	-									
CO3	•	-	-	-	-	1	1	1	3	-	1										
CO4	6 1 1	-	(- -)	-	-	1	-	1	3	-	1	-									
CO5	-	67	=	-	2	1	-	1	3	-	15.	(=									
Average	•		•	-	2	1	1	1	3	-	1	•									

COURSE OUTCOME (2022-23)

CIVIL -2ND YEAR

KCE301: ENGINEERING MECHANICS

CO Statement
Use scalar and vector analytical techniques for analysing forces in statically determinate structures.
Apply fundamental concepts of kinematics and kinetics of particles to the analysis of simple, practical problems.
Apply basic knowledge of mathematics and physics to solve real-world problems.
Understand basic dynamics concepts – force, momentum, work and energy.
Understand and be able to apply Newton's laws of motion.

			Mapping	of Cour	se outo	omes v	vith Pro	gram c	utcom	es			
				KCE30	1: ENGII	NEERING	MECH/	ANICS					
со	Program Outcomes(PO)												
CO	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	
CO1	3	3	3	2	3	1	-	-	-	-	-	2	
CO2	2	2	2	3	2	1	-	-	-	-	-	3	
CO3	3	3	3	2	3	2	-	-	-	-	-	2	
CO4	2	2	2	3	2	1						3	
CO5	2	2	2	2	2	1						2	
Average	2.4	2.4	2.4	2.4	2.4	1.2	-	(-	-	-	-	2.4	

COURSE OUTCOME (2022-23)

CIVIL -2ND YEAR

KCE302 :SURVEYING & GEOMATICS

СО	CO Statement
CO1	Describe the function of surveying and work with survey instruments, take observations, and prepare plan, profile, and cross-section and perform calculations.
CO2	Calculate, design and layout horizontal and vertical curves.
СОЗ	Operate a total station and GPS to measure distance, angles, and to calculate differences in elevation. Reduce data for application in a geographic information system.
CO4	Relate and apply principles of photogrammetry for surveying.
CO5	Apply principles of Remote Sensing and Digital Image Processing for Civil Engineering problems.

			Mapping	of Cou	rse outo	omes v	vith Pro	gram c	utcom	es			
				KCE30	2 :SURV	EYING 8	& GEOM	ATICS					
со	Program Outcomes(PO)												
	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	
CO1	3	2	3	2	2	1	-	-	-	-	-	2	
CO2	2	3	2	3	2	1		-	-	_		1	
CO3	3	2	3	2	3	1	/÷	_	-	-		2	
CO4	3	3	3	3	2	2						2	
CO5	2	3	2	3	2	1						1	
Average	2.6	2.6	2.6	2.6	2.2	1.2	-	-	-	-	-	1.6	

COURSE OUTCOME (2022-23)

CIVIL -2ND YEAR

KCE 303: FLUID MECHANICS

CO Statement	
Understand the broad principles of fluid statics, kinematics and dynamics.	
Understand definitions of the basic terms used in fluid mechanics.	
Understand classifications of fluid flow.	
Apply the continuity, momentum and energy principles.	
Apply dimensional analysis.	
	Understand the broad principles of fluid statics, kinematics and dynamics. Understand definitions of the basic terms used in fluid mechanics. Understand classifications of fluid flow. Apply the continuity, momentum and energy principles.

			Mapping	of Cour	se outo	omes v	vith Pro	ogram o	utcom	es				
				кс	E 303 :F	LUID M	ECHANI	CS						
со		Program Outcomes(PO)												
	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12		
CO1	3	2	3	2	2	1	-	-	-	-	-	2		
CO2	2	3	2	3	2	1	-	-	-	-	·	2		
CO3	3	2	3	2	3	2	-	-	-	-	-	3		
CO4	2	3	2	3	2	1						2		
CO ₅	3	2	3	2	2	1						3		
Average	2.6	2.4	2.6	2.4	2.2	1.2	-	•	-	•	-	2.4		

COURSE OUTCOME (2022-23)

CIVIL -2ND YEAR

KNC 302: PYTHON PROGRAMMING

CO	CO Statement
CO1	To read and write simple Python programs.
CO2	To develop Python programs with conditionals and loops.
CO 3	To define Python functions and to use Python data structures — lists, tuples, dictionaries.
CO4	To do input/output with files in Python.
CO 5	To do searching, sorting and merging in Python.

			Mapping	of Cou	rse out	omes v	with Pro	ogram o	outcom	es		
				KNC 30								
co				-	Pro	gram Oı	utcomes	(PO)		-		
	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
C O1	3	2	2	3	3	2	-	-	-		-	2
C O2	3	3	3	2	2	1	-	-	_	_		1
C O3	2	2	2	3	3	2		-	n <u>u</u>	_		2
C O4	3	3	3	2	2	1					-	1
C O5	2	2	2	2	3	2						2
Average	2.6	2.4	2.4	2.4	2.6	1.6	-	-	-	-	•:	1.6

COURSE OUTCOME (2022-23)

CIVIL -2ND YEAR

KCE 353: FLUID MECHANICS LAB

со	CO Statement
CO1	Understand the knowledge about the basic terminologies and will able to find out various conditions related to stability of floating bodies.
CO2	Understand the knowledge about the fluid motion and will be able to distinguish between them based on Reynolds no.
CO3	Apply Bernoulli's equation in flow measuring devices together with their calibration
CO4	Understand sources of major and minor losses and in practical conditions,

ostal			Mapping	of Cour	se outo	omes v	vith Pro	gram c	utcom	es	,			
				KCE :	353 :FLU	IID MEC	HANICS	LAB						
со			Program Outcomes(PO)											
CO	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12		
CO1	2	2	2	2	2	1	-	-	-	-	-	1		
CO2	2	3	2	2	2	1		-	-			1		
CO3	3	2	2	2	3	2	-	-	-	-	-	1		
CO4	2	3	2	2	2	1					7.54	1		
Average	2.25	2.5	2	2	2.25	1.25	•0	-	-	-		1		

COURSE OUTCOME (2022-23)

CIVIL -2ND YEAR

KCE 351: Building Planning & Drawing Lab

со	CO Statement
CO1	Apply the building bye laws and principles of planning for residential and public buildings.
CO2	Prepare detail drawings for residential and public buildings.
CO3	Explain the design and drawing of economical buildings

			Mapping	of Cour	se outo	omes v	vith Pro	gram o	utcom	es											
			к	E 351:	Building	Plannir	ng & Dra	wing La	b												
					Pro	gram Ou	itcomes	(PO)													
СО	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12									
CO1	2	-	-	-	-	2	3	-	-	::=	-	2									
CO2	2	-	-	-	-	2	3	-	-	100	-	2									
CO3	2	-	1	-	-	2	3	-	-	-	Ē,	2									
Average	2	-	-	-	•	2	3	-	•	X =	-3	2									

COURSE OUTCOME (2022-23)

CIVIL -2ND YEAR

KCE 352: Surveying and Geomatics Lab

СО	CO Statement
CO1	Apply the principle of surveying for civil Engineering Applications
CO2	Calculation of areas, Drawing plans and contour maps using different measuring equipment at field level
CO3	Write a technical laboratory report

			Mapping	of Cour	se outo	omes v	vith Pro	gram c	utcom	es		
				KCE 352	: Survey	ing and	Geoma	tics Lab				
со					Pro	gram Ou	itcomes	(PO)				
	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
CO1	2	-	-	-	- 1	2	3	-			-	2
CO2	2	-		-	-	2	3	-	-	-		2
C O3	2		-	-	-	2	3	-	.=	-	_	2
Average	2	-	-	-	7-	2	3	-	-	-		2

COURSE OUTCOME (2022-23)

CIVIL -2ND YEAR

KAS 403: MATHS - III

CO	CO Statement
CO1	The idea of Laplace transform of functions and their application
CO2	The idea of Fourier transform of functions and their applications
CO 3	The basic ideas of logic and Group and uses.
C O4	The idea s of sets, relation, function and counting techniques.
CO 5	The idea of lattices, Boolean algebra, Tables and Karnaugh maps.

		a .	Mapping	of Cour	se outo	omes v	vith Pro	ogram o	utcom	es			
					KAS 40	3: MAT	HS - III						
co	Program Outcomes(PO)												
CO	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	
CO1	2	2	2	1 9	2	-	- 1	-	-	-	-	1	
C O2	3	3	2	2	-	-	-			:=		1	
C O3	2	2	2	2		-	-	-	-	-	1	1	
C O4	2	2	-	2	2	-	-	-	-	-	1	1	
C O5	2	2	-	-	2	•	1		-	-	2	1	
Average	2.2	2.2	2	2	2	-	1	•	-	.	1.33	1	

COURSE OUTCOME (2022-23)

CIVIL -2ND YEAR

KAS 401: Technical Communication

co	CO Statement
C O1	Students will be enabled to understand the nature and objective of Technical Communication relevant for the work place as Engineers.
CO2	Students will utilize the technical writing for the purposes of Technical Communication and its exposure in various dimensions.
CO 3	Students would imbibe inputs by presentation skills to enhance confidence in face of diverse audience.
CO4	Technical communication skills will create a vast know-how of the application of learning to promote their technical competence.
CO 5	It would enable them to evaluate their efficacy as fluent & efficient communicators By learning the voice-dynamics.

			Mapping	of Cour	se outo	omes v	vith Pro	gram c	utcom	es				
				KAS 40	1: Tech	nical Co	mmun	ication						
CO		Program Outcomes(PO)												
-	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12		
CO1	1	2	3	1	2	1	2	2	-	2	-	2		
C O2	1	2	3	1	2	2	2	1		2	-	2		
C O3	1	1	2	1	1	2	2	2	l 1 	2	-	3		
C O4	2	1	3	2	1	1	2	1	-	2	-	3		
C O5	1	1	2	1	2	1	1	2	-	2	-	2		
Average	1.2	1.4	2.6	1.2	1.6	1.4	1.8	1.6	-	2	-	2.4		

COURSE OUTCOME (2022-23)

CIVIL -2ND YEAR

KCE 401: MATERIALS, TESTING & CONSTRUCTION PRACTICES

CO	CO Statement
C O1	Identify various building materials and to understand their basic properties.
C O2	Understand the use of non-conventional civil engineering materials.
C O3	Study suitable type of flooring and roofing in the construction process.
C O4	Characterize the concept of plastering, pointing and various other building services.
CO 5	Exemplify the various fire protection, sound and thermal insulation techniques, maintenance and repair of buildings.

			Mapping	of Cour	se out	omes v	with Pro	ogram o	utcom	es											
		KCE	401: MA	ATERIAL	S, TEST	ING & C	CONSTR	UCTIO	N PRAC	TICES											
СО					Pro	gram Ou	utcomes	(PO)			PO 11 PO 13										
	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12									
C O1	3	2	3	2	3	1		-	•	-	-	1									
C O2	2	3	2	3	2	1	-	-	-		-	2									
C O3	3	2	3	3	2	2	-	-	-	-	-	1									
C O4	2	3	2	2	3	1	-	-	-	-	-	2									
C O5	3	3	3	3	2	1	-	-	-	-	-	2									
Average	2.6	2.6	2.6	2.6	2.4	1.2	-	-		•/	-	1.6									

COURSE OUTCOME (2022-23)

CIVIL -2ND YEAR

KCE402: INTRODUCTION TO SOLID MECHANICS

CO Statement
Describe the concepts and principles of stresses and strains
Analyse solid mechanics problems using classical methods and energy methods.
Analyse structural members subjected to combined stresses.
Calculate the deflections at any point on a beam subjected to a combination of loads.
Understand the behaviour of columns, springs and cylinders against loads.

			Mapping	of Cour	se outo	omes v	vith Pro	gram c	utcom	es				
			KCE4	02: INTR	ODUCT	ION TO	SOLID	MECHA	ANICS					
		Program Outcomes(PO)												
CO	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12		
CO1	3	2	2	3	2	1	-	-	-	-	-	2		
C O2	2	3	3	2	3	2	-	-	-	-	-	2		
C O3	3	2	2	3	2	1	4	-	-	-	-	1		
C O4	2	3	3	2	3	2	-	-	17.0	-	-	2		
C O5	3	2	2	3	2	1	-	-	-	-	-	1		
Average	2.6	2.4	2.4	2.6	2.4	1.4	-	-	-	-	-	2		

COURSE OUTCOME (2022-23)

CIVIL -2ND YEAR

KCE 403: HYDRAULIC ENGINEERING & MACHINES

CO	CO Statement
C O1	Apply their knowledge of fluid mechanics in addressing problems in open channels.
C O2	Solve problems in uniform, gradually and rapidly varied flows in steady state conditions.
C O3	Have knowledge in hydraulic machineries like pumps and turbines

		r	Mapping	of Cour	se outo	omes v	vith Pro	ogram o	utcom	es			
			KCE 40	3: HYDI	RAULIC	ENGIN	EERING	& MAG	CHINES				
СО	Program Outcomes(PO)												
	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	
CO1	2	2	3	2	2		-	-	-	-	-	2	
CO2	3	3	2	2	2	-	-	-	-	-		3	
CO3	2	2	3	2	2		-	-	-	-		2	
CO4	1-	-	-	-	-	-	-	-	-	-	•	3	
C O5	-	-	-	-	-	-	-	-	-	-	-	3	
Average	2.33	2.33	2.66	2	2	•	-	-	-	-	•	2.6	

COURSE OUTCOME (2022-23)

CIVIL -2ND YEAR

KNC 401: Computer System Security

CO	CO Statement
CO1	To discover software bugs that pose cyber security threats and to explain how to fix the bugs to mitigate such threats
CO2	To discover cyber attack scenarios to web browsers and web servers and to explain how to mitigate such threats
CO3	To discover and explain mobile software bugs posing cyber security threats explain and recreate exploits, and to explain mitigation techniques.
CO4	To articulate the urgent need for cyber security in critical computer systems, networks, and world wide web, and to explain various threat scenarios
CO5	To articulate the well known cyber attack incidents, explain the attack scenarios, and explain mitigation techniques.

			Mapping	of Cour	se out	omes v	vith Pro	gram c	utcom	es				
							stem Se							
со		Program Outcomes(PO)												
	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12		
CO1	2	1	2	1	2		-	-	-	_	-	2		
CO2	3	3	3	2	2	-	-	-	_	12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-	1		
CO3	2	1	1	3	1	-	-	_	-					
CO4	2	1	3	3	3	_	-	_			-	2		
CO5	2	2	3	2	2	-	-	-	-	-	-	2		
Average	2.2	1.6	2.4	2.2	2		-		-	-	-	1.6		

COURSE OUTCOME (2022-23)

CIVIL -2ND YEAR

KCE 451: Material Testing Lab

со	CO Statement	
CO1	Test various properties of cement.	
CO2	Test properties of coarse and fine aggregates	
CO3	Test water absorption dimension tolerances and compressive strength of bricks.	

		1	Mapping	of Cour	se outo	omes v	vith Pro	gram o	utcom	es				
		1		KCE	451: M	aterial '	Testing	Lab						
СО		Program Outcomes(PO)												
CO	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12		
CO1	3	2	-	-		2	1	1	1	-	-	2		
CO2	3	2	-	-	-	3	1	2	1	-	-	2		
CO3	3	2	-	-2	3	3	1	2	1	-	747	2		
CO4	-	-	7-	-	-	(=	-	-	-	-	-	-		
CO5	-		~	9	+	-	S=	-	-	-	-	-		
Average	3	2	-	-	-	2.67	1	1.67	1	-	-	2		

COURSE OUTCOME (2022-23)

CIVIL -2ND YEAR

KCE-452: Solid Mechanics Lab

CO	CO Statement	
CO1	To determine the tension test on Mild Steel	
CO2	To determine the Hardness Test (Brinnel's and Rockwell) of diffrent metals	
СОЗ	To determine the Impact test (Charpy and IZOD)	

		N	/lapping	of Cour	se outo	omes v	vith Pro	gram c	utcom	es			
				КСЕ	-452: Sc	olid Med	hanics L	.ab					
со	Program Outcomes(PO)												
CO	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	
CO1	3	2	.=.	1 -	-	2	1	1	1	-	+	2	
CO2	3	2	t - 1	1 :-	-	3	1	2	1	-	-	2	
CO3	3	2	-	-	-	3	1	2	1			2	
CO4	-			-	-	-	-	-	-	-	-	-	
CO5	-	· -	¥	-	-	-	-	-	-		-	-	
Average	3	2	; = (-	-	2.67	1	1.67	1	-	-	2	

COURSE OUTCOME (2022-23)

CIVIL -2ND YEAR

KCE-453: Hydraulics & Hydraulic Machine Lab

СО	CO Statement
CO1	Determine Manning coefficient & the velocity distribution in an open channel
CO2	Analyse experimentally the study of flow characteristics over a hump & the study of flow characteristics through a horizontal contraction in a rectangular channel.
СОЗ	Analyse experimentally flow characteristics of a free hydraulic jump & study characteristics of pumps and turbines

		ı	Mapping	of Cour	se outo	omes v	vith Pro	gram c	utcom	es			
			КС	E-453: H	ydraulic	s & Hyd	raulic M	achine I	_ab				
со	Program Outcomes(PO)												
	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	
CO1	2	2	-	2	-	1	-	1	2	-	-	2	
CO2	3	3	-	2	-	1	-	1	2	-	-	2	
CO3	3	3	1.	2	-	2		1	2	-		1	
CO4	- 2	-	-	-	::=	-	-	-	-	-	-	-	
CO5	-	-	-	==	82	-	-	-	-	-	-	-	
Average	2.67	2.67	-	2	-	1.33	•	1	2	-	-	1.67	

COURSE OUTCOME (2022-23)

CIVIL -3RD YEAR

KCE 501 GEOTECHNICAL ENGINEERING

СО	CO Statement
CO1	Classify the soil and determine its Index properties.
CO2	Evaluate permeability and seepage properties of soil.
CO3	Interpret the compaction and consolidation characteristics & effective stress concept of soil.
CO4	Determine the vertical and shear stress under different loading conditions and explain the phenomenon of soil liquefaction.
CO5	Interpret the earth pressure and related slope failures.

		Mapping of Course outcomes with Program outcomes													
			K	CE 501	GEOTE	CHNICA	L ENGI	NEERIN	G						
со		Program Outcomes(PO)													
	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12			
CO1	3	2	3	2	3	-	-	-	-	-	_	2			
CO2	2	3	2	3	2	-	_	_		_					
CO3	3	2	3	2	3	-	_	_			3	2			
CO4	2	3	2	3	2	-	-	-	-	_	-	2			
CO5	3	2	3	3	3	-	-	-	-		_	1			
Average	2.6	2.4	2.6	2.6	2.6	-	-	-	-	•	-	1.6			

COURSE OUTCOME (2022-23)

CIVIL -3RD YEAR

KCE502 STRUCTURAL ANALYSIS

CO	CO Statement
CO1	Explain type of structures and method for their analysis.
CO2	Analyze different types of trusses for member forces.
СОЗ	Compute slope and deflection in determinate structures using different methods.
CO4	Apply the concept of influence lines and moving loads to compute bending moment and shear force at different sections.
CO5	Analyze determinate arches for different loading conditions.

			Mapping	of Cour	se outo	omes v	with Pro	ogram c	utcom	es				
				KCE50	2 STR	UCTUR.	AL ANA	LYSIS						
со		Program Outcomes(PO)												
	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12		
CO1	3	2	3	2	3	1		-	-	-	-	1		
CO2	2	3	2	3	2	1	-	-	-	-	-	2		
CO3	3	2	3	2	2	2	-	-	-	-	-	1		
CO4	2	3	2	3	3	1	-	12	-	-	-	2		
CO5	3	2	3	2	2	2	-		-	-	-	2		
Average	2.6	2.4	2.6	2.4	2.4	1.4	* 0	-	-	•	-	1.6		

COURSE OUTCOME (2022-23)

CIVIL -3RD YEAR

KCE 503 QUANTITY ESTIMATION AND CONSTRUCTION MANAGEMENT

со	CO Statement
CO1	Understand the importance of units of measurement and preliminary estimate for administrative approval of projects.
CO2	Understand the contracts and tender documents in construction projects.
СОЗ	Analyze and assess the quantity of materials required for civil engineering works as per specifications.
CO4	Evaluate and estimate the cost of expenditure and prepare a detailed rate analysis report.
CO5	Evaluate and estimate the cost of expenditure and prepare a detailed rate analysis report.

		I	Mapping	of Cour	se outo	omes v	vith Pro	gram o	utcom	es		
		KCE 503	QUANTI	TY ESTI	MATIO	N AND	CONST	RUCTIO	N MAN	AGEMEN	NT	
со	Program Outcomes(PO)											
CO	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
CO1	3	2	3	2	3	1	-	-	-	-		2
CO2	2	3	2	3	2	2	-	-		-		1
CO3	3	2	3	2	3	1	-	-	-	12	-	2
CO4	2	3	2	3	2	2						1
CO5	3	2	3	3	3	1						2
Average	2.6	2.4	2.6	2.6	2.6	1.4	-	-	-	-	-	1.6

COURSE OUTCOME (2022-23)

CIVIL -3RD YEAR

KCE 051 CONCRETE TECHNOLOGY

CO Statement	
Understand the properties of constituent material of concrete.	
Apply admixtures to enhance the properties of concrete.	
Evaluate the strength and durability parameters of concrete.	
Design the concrete mix for various strengths using difference methods.	
Use advanced concrete types in construction industry.	
	Understand the properties of constituent material of concrete. Apply admixtures to enhance the properties of concrete. Evaluate the strength and durability parameters of concrete.

			Mapping	of Cou	rse outo	omes v	with Pro	ogram o	utcom	es				
				KCE 05										
со		Program Outcomes(PO)												
	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12		
CO1	3	2	3	2	3	-	-		-	-	-	2		
CO2	2	3	2	3	3	-	-		-	-		1		
CO3	3	2	3	2	2	-	-	_	_		-	2		
CO4	2	3	2	3	2	-	-	-	-	-	_	1		
CO5	3	2	3	3	3	-		-	-	-	-	2		
Average	2.6	2.4	2.6	2.6	2.6	-	-	-	-	-	·	1.6		

COURSE OUTCOME (2022-23)

CIVIL -3RD YEAR

KCE 057 AIR & NOISE POLLUTION CONTROL

СО	CO Statement
CO1	Understand air pollutants and their impacts.
CO2	Explain air pollution chemistry and meteorological aspects of air pollutants.
СОЗ	Demonstrate methods for controlling particulate air pollutants.
CO4	Demonstrate methods for controlling gaseous air pollutants.
CO5	Design the concrete mix for various strengths using difference methods and Apply methods for controlling noise pollution

			Mapping	of Cour	se outo	omes v	vith Pro	gram c	utcom	es		
			KCE	057 A	IR & NC	ISE PO	LLUTIO	N CONT	ROL			
со		Program Outcomes(PO)										
CO	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
CO1	3	3	3	3	2		-	-	-	-	-	2
CO2	3	3	3	2	2		-	-	-	-	-	1
CO3	3	3	3	3	3		-	-	-	-	-	2
CO4	3	3	3	2	2		-		-	-	-	2
CO5	3	3	3	3	3		E		-	-	-	1
Average	3	3	3	2.6	2.4		-	-	-		-	1.6

CIVIL -3RD YEAR

KNC 501 : Constitution of India, Law & Engineering

со	CO Statement
CO1	Identify and explore the basic features and modalities about Indian constitution
CO2	Differentiate and relate the functioning of Indian parliamentary system at the centre and state level.
соз	Differentiate and relate the functioning of Indian parliamentary system at the centre and state level.
CO4	Differentiate and relate the functioning of Indian parliamentary system at the centre and state level.
CO5	Interpret and evaluate the role of engineers with different organizations and governance models

			Mapping	of Cour	se outo	omes v	vith Pro	gram c	utcom	es		
			KNC 5	01 : Con	stitutio	n of Indi	a, Law 8	& Engine	eering			
	Program Outcomes(PO)											
со	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
CO1	1	-	-	-	1	2	-	1	1	1	1	1
CO2	1	-	-	-	2	2	-	1	1	1	-	1
CO3	1	-	-	-	1	1	2	1	9	1	1	1
CO4	1	-	9	-	2	2	-	1	-	1	-	1
CO5	1	-		-	2	2	-	1	1	1	2	1
Average	1		•	-	1.6	1.8	-	1	1	1	1.33	1

COURSE OUTCOME (2022-23)

CIVIL -3RD YEAR

KCE-551: CAD LAB

СО	CO Statement
CO1	Understand computer aided drafting and different coordinate system
CO2	Drawing of Regular shapes using Editor Mode and Exercise on Draw tools and Modify tools
CO3	Drawing of building components like walls, lintels, Doors, and Windows. Using CAD software
CO4	Drawing a plan of Building and dimensioning. Developing a 3-D plan from a given 2-D plan
CO5	Developing sections and elevations for given a) Single storied buildings b) multi storied buildings

			Mapping	of Cour	se outo	omes v	vith Pro	gram c	utcom	es		
					KCE-5	51: CAE	LAB					
со	Program Outcomes(PO)											
	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
CO1	3	3	2	2	2	1	1	-	i.e	-	-	1
CO2	3	3	3	2	2	1	1	-	-	-	_	2
CO3	2	2	2	2	2	1	1	-	-	-	-	1
CO4	3	3	3	2	2	1	1	-	-	-	-	2
CO5	2	2	2	2	2	1	1	-	-	-	-	1
Average	2.6	2.6	2.4	2	2	1	1	-	-	~	-	1.4

COURSE OUTCOME (2022-23)

CIVIL -3RD YEAR

KCE-552: GEOTECHNICAL ENGINEERING LAB

со	CO Statement	
CO1	Determine index properties of soils	
CO2	Classify soils	
СОЗ	Determine engineering properties of soils	
CO4	Apply the concept of MDD and OMC to control compaction in the field	
CO5	Analyze various soil parameters and prepare soil report.	

12			Mapping	of Cour	se out	omes v	vith Pro	ogram o	utcom	es				
				CE-552: G										
со		Program Outcomes(PO)												
CO	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12		
CO1	3	3	2	2	1	1	1	-	-	-	-	2		
CO2	2	3	2	2	2	1	1			-	_	2		
CO3	2	2	3	2	2	1	1	_	_		-	2		
CO4	3	2	3	2	2	1	1		_		-	2		
CO5	3	2	2	2	2	1	1		-	-		1		
Average	2.6	2.4	2.4	2	1.8	1	1		-	-	-	1.8		

COURSE OUTCOME (2022-23)

CIVIL -3RD YEAR

KCE-553: QUANTITY ESTIMATION AND MANAGEMENT LAB

со	CO Statement
CO1	Study of DSR, CPWD specifications and NBC.
CO2	Estimation of quantities for any one of the following: Building/ Septic tank/Water supply pipe line/road/bridge.
соз	Preparation of Bill of Quantities (BOQ) for above project
CO4	Practice on open source project management software / MS Project/Primavera software for same problem.
CO5	Study of any full set of tender documents (Institute shall provide the set from ongoing/ completed tenders).

			Mapping	of Cour	se out	omes v	vith Pro	gram o	utcom	es			
			KCE-553:	QUANTI	TY ESTIN	/IATION	AND M	ANAGEI	MENT LA	AΒ			
со	Program Outcomes(PO)												
- 00	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	
CO1	3	3	2	2	2	1	1	-	-	8=	-	3	
CO2	3	2	3	2	2	1	1	-	-		-	2	
CO3	2	2	3	2	2	1	1	-	-	-	-	2	
CO4	3	2	3	2	2	1	1		_	-	-	2	
CO5	3	3	2	2	2	1	1	2	-	-	-	1	
Average	2.8	2.4	2.6	2	2	1	1	-	-	-	-	2	

COURSE OUTCOME (2022-23)

CIVIL -3RD YEAR

KCE 601 DESIGN OF CONCRETE STRUCTURE

CO Statement
Analyse and Design RCC beams for flexure by IS methods.
Analyse and Design RCC beams for shear by IS methods.
Analyse and Design RCC slabs and staircase by IS methods.
Design the RCC compression members by IS methods.
Design various types of footings and cantilever retaining wall.

			Mapping	of Cou	rse out	omes v	with Pro	gram c	utcom	es		
2)			КС	E 601	DESIGN	OF CON	CRETE S	TRUCTU	RE			
со	Program Outcomes(PO)											
	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
CO1	3	2	3	2	3		-	-	-	-	-	1
CO2	2	3	2	3	3		-	-	-	-	-	2
CO3	3	2	3	2	2		-	-	-	_	-	1
CO4	2	3	2	3	3		-	-	-		_	2
CO5	3	2	2	3	2		-		-	-	-	2
Average	2.6	2.4	2.4	2.6	2.6		-	-	-	-	-	1.6

COURSE OUTCOME (2022-23)

CIVIL -3RD YEAR

KCE 602 TRANSPORTATION ENGINEERING

СО	CO Statement
CO1	Understand the history of road development, their alignment & Survey
CO2	Design the various geometric parameters of road.
СОЗ	Study the traffic characteristics & design of road intersections & signals.
CO4	Examine the properties of highway materials & their implementation in design of pavements
CO5	Learn methods to construct various types of roads.

1 2			Mapping	of Cour	se outo	omes v	vith Pro	ogram o	utcom	es				
			К	CE 602	TRANSP	ORTATI	ON ENG	INEERIN	IG					
со		Program Outcomes(PO)												
	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12		
CO1	3	2	3	2	3		-	_	-	-	-	1		
CO2	2	3	2	3	3					-		2		
CO3	3	2	3	2	2			-	-	-		1		
CO4	2	3	2	3	3			-	_			2		
CO5	3	2	2	3	2		-	-	-	-		2		
Average	2.6	2.4	2.4	2.6	2.6		ě	-	-			1.6		

COURSE OUTCOME (2022-23)

CIVIL -3RD YEAR

KCE 603 ENVIRONMENTAL ENGINEERING

со	CO Statement	
CO1	Assess water demand and optimal size of water mains.	
CO2	Layout the distribution system & Dayout the capacity of reservoir.	
СОЗ	Investigate physical, chemical & Diological parameter of water.	
CO4	Design treatment units for water and waste water.	
CO5	Apply emerging technologies for treatment of waste water.	

		j	Mapping	of Cour	se outo	omes v	vith Pro	gram c	utcom	es			
			ŀ	(CE 603 E	NVIRO	NMENTA	AL ENGI	NEERING	3	-			
со	Program Outcomes(PO)												
CO	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	
CO1	3	2	3	2	3		-	-	-	-	-	2	
CO2	2	3	2	3	2		-		-	-	-	1	
CO3	3	2	3	2	3				-	-	1-	2	
CO4	2	3	2	3	3		-	-	-	-	-	1	
CO5	3	2	3	3	2		1 =	-	-	-	-	2	
Average	2.6	2.4	2.6	2.6	2.6		-	•	-	•	,-	1.6	

COURSE OUTCOME (2022-23)

CIVIL -3RD YEAR

KCE062 RIVER ENGINEERING

СО	CO Statement
CO1	Explain river morphology and its classification.
CO2	Explain hydraulic geometry and behavior of river.
CO3	Explain socio-cultural influences and ethics of stream restorations.
CO4	Analyze flow and sediment transport in rivers and channels.
CO5	Design guide band, embankments and flood protection systems.

		j	Mapping	of Cour	se outo	omes v	vith Pro	gram o	utcom	es				
				KCE	062 RI	VER EN	GINEERI	NG						
со		Program Outcomes(PO)												
CO	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12		
CO1	2	3	2	3	2		-	-	-	82	-	2		
CO2	3	3	2	2	3		-	-	-	-	-	1		
CO3	2	2	3	3	2		-	-	-		-	2		
CO4	3	3	3	2	3		-	-	-	-	-	1		
CO5	2	2	2	3	2		-	-	-	-	-	1		
Average	2.4	2.6	2.4	2.6	2.4		-		-	-	\ <u>-</u>	1.4		

COURSE OUTCOME (2022-23)

CIVIL -3RD YEAR

KOE 066 GIS & REMOTE SENSING

СО	CO Statement
CO1	Understand about the principles of Remote Sensing and its advantages and limitations.
CO2	Retrieve the information content of remotely sensed data.
CO3	Apply problem specific remote sensing data for engineering applications.
CO4	Analyze spatial and attribute data for solving spatial problems.
CO5	Create GIS and cartographic outputs for presentation

			Mapping	of Cou	se outo	omes v	with Pro	ogram o	utcom	es				
							EMOTE S							
со	Program Outcomes(PO)													
	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6		PO 8	PO 9	PO 10	PO 11	PO 12		
CO1	2	2	3	2	2				-	-		1		
CO2	2	3	2	2	2							1		
CO3	3	- 2	2	2	2		_			5 0	-	1		
CO4	2	3	2	3	3		-		1800	-	-	1		
CO5	3	2	2	3	2		-		-	-	-	1		
Average	2.4	2.4	2.2	2.4	2.2		-	-	-	1=	-	2 1.2		

COURSE OUTCOME (2022-23)

CIVIL -3RD YEAR

KNC 602: ITCS

СО	CO Statement
CO1	Apply the basic principles of thought process and reasoning to identify the roots and details of some of the contemporary issues faced by our nation
CO2	Illustrate the importance of scripts and languages in India
СОЗ	Understanding of different religions of India & socio religious reform movement of 19th century
CO4	Application of Yogic-science and wisdom capsules in Sanskrit literature that are important in modern society.
CO5	Understand the importance of Indian Architect, Engineering and Architecture in Ancient India

		ļ	Mapping	of Cour	se outo	omes v	vith Pro	gram o	utcom	es			
					KNO	602 : 17	rcs						
	Program Outcomes(PO)												
СО	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	
CO1	-	-	-	-	-	-	-	1	1	1	1	2	
CO2	-	× ±	-	-			-	1	1	1	-	2	
CO3	-	-		.=	-	-	•	1	-	1	1	3	
CO4	-	-	-	-		-	-	1	-	1	-	2	
CO5	-	-	-	-	-	- 1	-	1	1	1	2	2	
Average	-	-	-	-	-	-	-	1	1	1	1.33	2.2	

COURSE OUTCOME (2022-23)

CIVIL -3RD YEAR

KCE-651 Transportation Engineering Lab

CO Statement
To Determine the Crushing Value, Impact Value, Flakiness Index and Elongation Index, Los Angeles Abrasion Value and Stripping Value of Coarse Aggregates
To determine the penetration Value, Softening Point, Ductility Value of Bitumen
To determine the Softening Point of Bituminous material
To determine the Ductility Value of Bituminous material
To determine the Flash and Fire Point and stripping value of Bituminous material

			Mapping	of Cour	se out	omes v	with Pro	ogram o	utcom	es					
				KCE-651	Transpo	rtation	Enginee	ring Lat)						
со		Program Outcomes(PO)													
	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12			
CO1	2	3	2	2	2	1	-	-	-	-	-	1			
CO2	2	3	3	2	2	1			_	_		1			
CO3	3	2	2	2	2	1	-	-	-		-	2			
CO4	2	3	2	2	2	1	-	-				1			
CO ₅	3	2	2	2	2	1	-	-		-	_	2			
Average	2.4	2.6	2.2	2	2	1	-	-	-	_	-	1.4			

COURSE OUTCOME (2022-23)

CIVIL -3RD YEAR

KCE-652 Environmental Engineering Lab

СО	CO Statement
CO1	Build knowledge about the crystal structure and classification of materials.
CO2	Understand methods of determining mechanical properties and their suitability for applications.
СОЗ	Classify cast irons and study their applications
CO4	Select suitable heat-treatment process to achieve desired properties of metals and alloys
CO5	Appraise the applications of advanced materials technology in their daily life

)	Mapping	of Cour	se outo	omes v	vith Pro	gram c	utcom	es			
				KCE-652	Environ	mental	Enginee	ring Lab					
со	Program Outcomes(PO)												
CO	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	
CO1	2	3	2	2	2	1	1	-	-	-	-	1	
CO2	3	3	3	2	2	1	1	-	-	-	-	2	
CO3	3	2	3	2	2	1	1	-		-	-	1	
CO4	2	3	2	2	2	1	1	-	-	-		1	
CO5	3	2	2	2	2	1	1	-	-	-	-	2	
Average	2.6	2.6	2.4	2	2	1	1	-	-	-	•	1.4	

COURSE OUTCOME (2022-23)

CIVIL -3RD YEAR

KCE-653 Structural Detailing Lab

СО	CO Statement
CO1	To verify Maxwell's Reciprocal theorem
CO2	Horizontal thrust in a three-hinged arch and to draw influence line diagrams for Horizontal Thrust end Bending moment.
CO3	Classify cast irons and study their applications
CO4	To find horizontal thrust in a two hinged arch and to draw influence line diagrams for horizontal Thrust and bending moment
CO5	Study of SP34/IS13920/IS456:2000 for detailing of structural elements

		1	Mapping	of Cour	se outo	omes v	vith Pro	gram o	utcom	es		
				KCE-	653 Stru	ctural D	etailing	Lab				
	Program Outcomes(PO)											
СО	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
CO1	3	3	2	2	2	1	1	-	-		-	1
CO2	3	3	3	2	2	1	1		-	20	-	2
CO3	3	2	3	2	2	1	1	-	-	-	-	1
CO4	2	3	3	2	2	1	1	-	-	-	-	1
CO5	3	2	2	2	2	1	1	-	-	#3		2
Average	2.8	2.6	2.6	2	2	1	1	-		• ::	-	1.4

COURSE OUTCOME (2022-23)

CIVIL -4TH YEAR

KCE 075: DESIGN OF STEEL STRUCTURES

СО	CO Statement
CO1	Understand properties of steel and types of loads acting on steel structures.
CO2	Design welded and bolted type of connections for elementary steel structures.
CO3	Design tension members for elementary steel structures.
CO4	Design compression members such as simple columns, braced and latticed columns and column bases.
CO5	Design flexural members such as beams, purlins and girders.

		l	Mapping	of Cour	se outo	omes v	vith Pro	gram c	utcom	es				
				KCE 075:	DESIGN	OF STE	EL STRU	CTURES						
со		Program Outcomes(PO)												
	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12		
CO1	3	2	2	2	3	1	-	-	-	-	-	2		
CO2	3	3	3	3	2	1	-			_		1		
CO3	2	2	2	2	3	1		-	-	-		2		
CO4	3	3	3	3	2	1						2		
CO5	2	2	2	2	3	1						1		
Average	2.6	2.4	2.4	2.4	2.6	1	•	(4)	-	-	-	1.6		

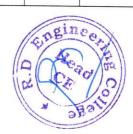
COURSE OUTCOME (2022-23)

CIVIL -4TH YEAR

KOE074 - RENEWABLE ENERGY RESOURCES

со	CO Statement
CO1	Conduct experiments illustrating the application of KVL/KCL and network theorems to DC electrical circuits. Perform experiment illustrating BH curve of magnetic materials
CO2	Demonstrate the behaviour of AC circuits connected to single phase AC supply and measure power in single phase as well as three phase electrical circuits.
соз	Calculate efficiency of a single-phase transformer and DC machine

		ľ	Napping	of Cour	se outo	omes v	vith Pro	gram c	utcom	es		1		
			K	DE074 - I	RENEWA	ABLE EN	ERGY RE	SOURCE	ES					
со		Program Outcomes(PO)												
CO	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12		
CO1	2	2	3	2	3	1	-	-	-	-	-	1		
CO2	3	3	2	3	2	2	-	-	-	-	-	2		
CO3	2	2	3	2	3	1	-	-	-	-	-	3		
CO4	-	-	-	-	-	-		-	-		7=	-		
CO5	-	-	•	-	-		-	-	-	-	-	-		
Average	2.33	2.33	2.66	2.33	2.66	1.33	-	-	-	•	3 .	2		


COURSE OUTCOME (2022-23)

CIVIL -4TH YEAR

KCE 070 - Railway, Waterway and Airway Engineering

со	CO Statement
CO1	Explain the importance of railway infrastructure.
CO2	Identify the factors governing design of railway infrastructures.
CO3	Analysis and design the railway track system.
CO4	Understand the concepts of airport engineering and design components of airport.
CO5	Associate with the concepts of water transport system.

			Mapping	of Cour	rse outo	omes v	vith Pro	ogram c	utcom	es		-		
			KCE 07	0 - Railw	ay, Wat	erway a	nd Airw	ay Engi	neering					
СО		Program Outcomes(PO)												
CO	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12		
CO1	3	2	3	2	3	2	-	-	-/-	-	-	1		
CO2	2	3	2	3	2	1	-	-	-	-	-	2		
CO3	3	2	3	2	3	2	-	-	-	-		1		
CO4	2	3	2	3	2	1	-	-	-	-	-	2		
CO5	3	2	3	2	3	2	-		- 4	-	-	1		
Average	2.6	2.4	2.6	2.4	2.6	1.6	-	-	-	-	•	1.4		

COURSE OUTCOME (2022-23)

CIVIL -4TH YEAR

KHU 702: PROJECT MANAGEMENT & ENTREPRENEURSHIP

со	CO Statement
CO1	Understand the basics concepts of Entrepreneurship.
CO2	Understand the basics concepts of Entrepreneurial Idea and Innovation.
СОЗ	Understand the basics concepts of Project Management.
CO4	Understand the basics concepts of Project Financing.
CO5	Understand the basics concepts of Social Entrepreneurship.

		^	Mapping	of Cour	se outo	omes v	vith Pro	gram c	utcom	es				
			KHU 702:	PROJEC	T MANA	GEMEN	T & ENT	REPREN	IEURSH	IP				
со		Program Outcomes(PO)												
CO	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12		
CO1	3	3	3	3	2	1	-	-	-	-	9 -	2		
CO2	3	3	3	3	2	1	-	-	-	-	-	2		
CO3	3	3	3	3	2	1	<u>.</u>	-	-	-	-	2		
CO4	3	3	3	3	2	1	-	1	-	-	-	2		
CO5	3	3	3	3	2	1	-	-	-	-	-	2		
Average	3	3	3	3	2	1	-	-	-	-	-	2		

COURSE OUTCOME (2022-23)

CIVIL -4TH YEAR

KCE 753: PROJECT - I

со	CO Statement
CO1	Work effectively as an individual and member of the team to solve complex engineering problems.
CO2	Apply engineering knowledge to solve real life problems and involve in self-learning process.
CO3	Apply research based knowledge and methods to arrive at valid conclusions and Apply modern tools for analysis and design of complex engineering problems.
CO4	Develop ethical solutions of engineering problems taking into account its impact on society, environment and sustainability.
CO5	Compose and present detailed project report of his/her works and defends effectively.

			Mapping	of Cour	se outo	omes v	vith Pro	gram o	utcom	es				
					KCE 75	3: PROJ	ECT - I							
со		Program Outcomes(PO)												
CO	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12		
CO1	3	3	3	3	2	2	2	-	:=:	-	2	2		
CO2	3	3	3	2	2	2	2	-	-	-	1	2		
CO3	3	3	3	3	3	1	2	:=	-	•	1	2		
CO4	3	3	3	2	3	2	2	-	-	-	1	2		
CO5	3	3	3	3	2	2	2	*	-	-	1	2		
Average	3	3	3	2.6	2.4	1.8	2	-	-	-	1.2	2		

COURSE OUTCOME (2022-23)

CIVIL -4TH YEAR

KCE 751: Concrete Lab

CO	CO Statement	
CO1	Conduct Quality Control tests on concrete making materials.	
CO2	Conduct Quality Control tests on fresh & hardened concrete.	
СОЗ	Design and test concrete mix.	

			Mapping	of Cour	se outo	omes v	vith Pro	gram c	utcom	es				
					KCE 751	L: Concr	ete Lab							
со		Program Outcomes(PO)												
CO	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12		
CO1	3	2		-	-	-	-	-	-	-	. .	2		
CO2	3	2	-	-	,=,	-	-	-	-	-	-	2		
CO3	3	2	3	2	-	-	-	-	-	•		2		
CO4	-	-	-	-	-	-	-	-	-	-	-	-		
CO5	-	-	- 7:	-	-	-	-	-	-		;: - ,	_		
Average	3	2	3	2	-	-	-	-	-	-	-	2		

COURSE OUTCOME (2022-23)

CIVIL -4TH YEAR

KHU 801 :RURAL DEVELOPMENT: ADMINISTRATION AND PLANNING

СО	CO Statement
CO1	Students can understand the definitions, concepts and components of Rural Development.
CO2	Students will know the importance, structure, significance, resources of Indian rural economy.
CO3	Students will have a clear idea about the area development programmes and its impact.
CO4	Students will be able to acquire knowledge about rural entrepreneurship.
CO5	Students will be able to understand about the using of different methods for human resource planning

			Mapping	of Cour	se outo	omes v	vith Pro	gram o	utcom	es				
		KHU	801 :RUR	AL DEVE	LOPMEN	NT: ADIV	IINISTRA	ATION A	ND PLA	NNING				
		Program Outcomes(PO)												
со	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12		
CO1	3	2	3	2	3	1	-	-	-	-	·=	1		
CO2	2	3	2	3	2	1	-	7.5	.=.	-	11-	2		
CO3	3	2	3	2	3	1	-2	-	-	-	-	1		
CO4	3	3	2	3	2	1	-1	-	-	-	-	2		
CO5	2	2	3	2	3	2	-	-	¥2	-	-	1		
Average	2.6	2.4	2.6	2.4	2.6	1.2	-	-	-::	-	-	1.4		

COURSE OUTCOME (2022-23)

CIVIL -4TH YEAR

KOE 085: QUALITY MANAGEMENT

CO Statement
Understand and define quality and its concept and cost involved.
Learn strategic planning and implementation of quality systems.
To grasp the nature and importance of various components that constitute TQM
Choose appropriate statistical techniques for improving processes
Understand the keys to customer satisfaction.

			Mapping	of Cour	se outo	omes v	vith Pro	gram c	utcom	es		
				KOE 0	85: QUA	LITY M	ANAGEN	MENT				
со					Pro	gram Ou	itcomes	(PO)				
CO	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
CO1	3	2	3	3	1	1	-		-	-		2
CO2	3	2	2	2	1	-	-	-	-	-	-	2
CO3	3	3	2	2	1		-	-	-	-	-	1
CO4	3	2	2	3	1	-	-	-	_	-	-	2
CO5	-	2	-	3	1	2	-	-	-	-	-	2
Average	3	2.2	2.25	2.6	1	1.5	-	-	-	- 2	-	1.8

COURSE OUTCOME (2022-23)

CIVIL -4TH YEAR

KOE 094: DIGITAL AND SOCIAL MEDIA MARKETING

СО	CO Statement
CO1	Understand the concept of digital marketing and its real-world iterations
CO2	Articulate innovative insights of digital marketing enabling a competitive edge
СОЗ	Understand how to create and run digital media based campaigns
CO4	Identify and utilise various tools such as social media etc.
CO5	Understand the concept of digital marketing and its real-world iterations

			Mapping	of Cour	se outo	omes v	vith Pro	gram o	utcom	es		
			KOE 0	94: DIGI	TAL ANI	SOCIA	L MEDIA	MARK	TING			
со		77			Pro	gram Ou	itcomes	(PO)				
CO	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
CO1	-	2	3	3	3	-	-	-	-	-	-	2
CO2	(i -	2	3	3	3		-	-	-	-	-	2
CO3	84	3	2	2	2	-	-	-	-	:=		2
CO4	-	. 2	2	3	2	-	-	-	-	-	-	2
CO5	-	-	-	1-	-	-	-	-	-	-	-	-
Average	_	2.25	2.25	1.75	2.5	-	-	-	-	-	-	2

COURSE OUTCOME (2022-23)

CIVIL -4TH YEAR

KCE 851 Project - II

со	CO Statement
CO1	Work effectively as an individual and member of the team to solve complex engineering problems.
CO2	Apply engineering knowledge to solve real life problems and involve in self-learning process.
CO3	Apply research based knowledge and methods to arrive at valid conclusions and apply modern tools for analysis and design of complex engineering problems.
CO4	Develop ethical solutions of engineering problems taking into account its impact on society, environment and sustainability.
CO5	Compose and present detailed project report of his/her work and defend effectively.

		ļ	Mapping	of Cour	se outc	omes v	vith Pro	gram o	utcom	es		
					KCE 85	1 Proje	ect - II					
					Prog	gram Ou	itcomes	(PO)				
со	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
CO1	3	3	3	3	2	2	2	-	3	2	1	2
CO2	3	3	3	3	3	2	2	-	2	2	1	2
CO3	3	3	3	2	2	1	2	-	112	-	1	2
CO4	3	3	3	3	2	2	1	-	2	2	1	2
CO5	3	3	3	3	2	2	2	1.T.	2	2	1	-
Average	3	3	3	2.8	2.2	1.8	1.8	-	1.8	2	1	2

	2		Avera			OF CIV	II. EN	IGINE	FRIN	C	AZI	AB	AD		
S.N.	YEAR	SEMESTER	Subjects/Labs With Codes				Comes		ogram		omes				
				P01	PO2	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012
			ES & E (KOE -033)	2.2	2	2	2	2	1				-	-	2
		TER	HUMAN VALUE (KVE-301)	•	•		(A)	2	1	1	1	3	-	1	
	a.	III SEMESTER	EM (KCE-301)	2.4	2.4	2.4	2.4	2.4	1.25	-	-			-	2.4
	d Ye	en e	S & G (KCE-302)	2.6	2.6	2.6	2.6	2.2	1.2	-	-	-	÷		1.6
1	.) 2n		FM (KCE-303)	2.6	2.4	2.6	2.4	2.2	1.2		-		1-	-	2.4
	h (CE		MATHS III (KAS - 403)	2.2	2.2	2	2	2		1	-			1.33	1
	B.Tech (CE) 2nd Year	Æ	TC (KAS - 401)	1.2	1.4	2.6	1.2	1.6	1.4	1.8	1.6		2	-	2.4
	&	IV SEMESTER	MT &CP (KCE - 401)	2.6	2.6	2.6	2.6	2.4	1.2				-	-	1.6
		≥ 3	SOLID MECHANICS (KCE-402)	2.6	2.4	2.4	2.6	2.4	1.4	-	-			-	2
			HE & M (KCE - 403)	2.33	2.33	2.66	2	2	-	2+	-		-		2.6
			GE (KCE-501)	2.6	2.4	2.6	2.6	2.6	- 1	-	-	. 1		-	1.6
		Æ	SA (KCE-502)	2.6	2.4	2.6	2.4	2.4	1.4	-	-		-		1.6
	<u> </u>	V SEMESTER	QE & CM (KCE-503)	2.6	2.4	2.6	2.6	2.6	1.4		-	-	-		1.6
	D Ye	× ×	CT (KCE-051)	2.6	2.4	2.6	2.6	2.6			-	-	-		1.6
2	CE) 3RD Year	Vilena Zina	A&NP (KCE - 057)	3	3	3	2.6	2.4			-		-	-	1.6
	3)	era estamblica. Perendentia	DCS (KCE - 601)	2.6	2.4	2.4	2.6	2.6	- 1	1.5	-	-	-		1.6
	Tech (Æ	TE (KCE - 602)	2.6	2.4	2.4	2.6	2.6	-		-	•	-	-	1.6
	B.T	VI SEMESTEI	EE (KCE - 603)	2.6	2.4	2.6	2.6	2.6	-	:=::		*	-	-	1.6
		N N	RE (KCE - 062)	2.4	2.6	2.4	2.6	2.4		- 1			(#)		1.4
			GIS & RS (KOE - 066)	2.4	2.4	2.2	2.4	2.2		-	-			-	1.2
			PM (KHU-702)	3	3	3	3	2	1	-	-	-	-	-	2
	ear	IESTER	RWAE (KCE - 070)	2.6	2.4	2.6	2.4	2.6	1.6	-	-				1.4
	ith Υ	VII SEMESTER	DSS (KCE - 075)	2.6	2.4	2.4	2.4	2.6	1	. 1	-				1.6
3	B.Tech (CE) 4th Year		RER (KOE-074)	2.33	2.33	2.66	2.33	2.66	1.33	-	-				2
	ech (RD (KHU-801)	2.6	2.4	2.6	2.4	2.6	1.2	-	-				1.4
	B.T.	VIII SEM.	QM (KOE-085)	3	2.2	2.25	2.6	1	1.5	-		-			1.8
		>								-					

2.25

2.25

2.50

1.75

2.5

2.30

1.30

3.00

DSMM (KOE - 094)

Average

Director

R.D. Engineering College

Duhai, Ghaziabad

3.17

2.00

2

1.75

ACTIO	DEPARTMENT	RING COLLEGE, GHAZ	The second second
S.N.	ON TAKEN ON IDENTIFIE Gap Identified	Relevent PO	OUTCOMES (2022-
1	NO GAP	Relevent PO	Action Taken
2			

SAMPLE OF CO-PO MAPPING

Department of Computer Science & Engineering And Allied Branches

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

COURSE OUTCOME (2022-2023)

B. Tech II (Semester III)

KOE 039 : DIGITAL ELECTRONICS

Course Outcomes
Apply concepts of Digital Binary System and implementation of Gates.
Analyze and design of Combinational logic circuits.
Analyze and design of Sequential logic circuits with their applications.
Implement the Design procedure of Synchronous & Asynchronous Sequential Circuits.
Apply the concept of Digital Logic Families with circuit implementation

	Mapping of Course outcomes with Program outcomes											
KOE ()39 : DI	GITAL 1	ELECTI	RONIC	CS				•			
CO	Progra	m outcon	nes(PO)	23							×	
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO11	PO12
CO1	3	2	3	-	1	1	3	-	_	12	1	-
CO2	2	1	2	=	2	1	1	-	-	-	1	-
CO3	1	2	1	₩.	3	1	2	-	-	-	1	-
CO4	2	3	1	-	2	1	-	-	-	-	1	-
CO5	2	2	2	-	2			•	E	-	¥	-
Average	2	2	1.8	-	2	1	2	-	-	-	1	ı-

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

COURSE OUTCOME (2022-2023)

B. Tech II (Semester III)

KVE 301: Universal Human Value

CO				Course	e Outc	omes						
CO1	underst	tand the sand the ne	eed, basic	guidelin	es, cont	ent of	value ed	ucation,	explore	the mea		
CO2	Distinguish between the Self and the Body, understand the meaning of Harmony in the Self the Coexistence of Self and Body.											
CO3		Understand the value of harmonious relationship based on trust, respect and other naturally acceptable feelings in human-human relationships and explore their role in ensuring a harmonious society.										
CO4	Unders in the n	tand the hature.	armony ii	n nature	and exis	stence, a	ind work	out the	ir mutua	ılly fulfi	lling part	cipation
CO5	Distingu	iish betwe	een ethica	l and une	ethical p	ractices	•					
		Mapp	ing of (Course	outco	omes v	vith P	rograr	n outc	omes	_	
			K	VE 30	1: Univ	ersal H	luman	Value				
				I	Progran	n outcor	nes(PO))				
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO11	PO12
CO1	2	2	1	-	2	1	1	-	-	-	1	-
CO2	3	2	2	-	2	-	_	-	-	-	-	-
CO3	2	1	3	-	-	2	1	-	-	-	1	-
CO4	1	3	-	-	2	3	-	-	=4	-	1	-
CO5	2	2	-	-	2	-	-	-	-:	-	-	-
Average	2	2	2	_	2	2	1		-	-	1	_

Director College R.D. Engineering Buhai, Ghaziabad

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

COURSE OUTCOME (2022-2023)

B. Tech II(Semester III)

KCS301: Data Structures Using C

CO	Course Outcomes
CO1	Understand the complexity of algorithms by Describing various data structures and their representations in memory withtheir common applications.
CO2	Describe the concept of recursion and implement various data structures like stack, queue, list, tree, and graph using static and dynamic memory allocations.
CO3	Study and Apply various searching and sorting algorithms on different data structures.
CO4	Analyze the algorithmic implementation of non-linear data structures such as searching and sorting by comparing their computational efficiency.
CO5	Evaluate the alternate data structures algorithm with respect to its performance to solve a real-world problem.

	Mapping of Course outcomes with Program outcomes							rogra	m out	comes		
KCS3	KCS301: Data Structures Using C											
66	Program outcomes(PO)											
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO11	PO12
CO1	3	3	2	2	1	1	1	1	1	1	1	2
CO2	3	3	2	2	2	1	1	1	1	1	1	2
CO3	3	3	2	3	2	1	1	1	1	1	1	2
CO4	3	3	2	3	2	2	1	1	1	1	1	2
CO5	3	3	3	3	2	2	1	1	2	2	2	3
Average	3	3	2.1	2.6	1.8	1.4	1	1	1.2	1.2	1.2	2.1

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

COURSE OUTCOME (2022-2023)

B. Tech II(Semester III)

KCS302: Computer Organization and Architecture

CO	Course Outcomes
CO1	Understand and describe the basic organization and operation of the components of a digital computer system.
CO2	Illustrate various arithmetic and logical operations on different types of numbers to design an arithmetic and logic unit.
CO3	Analyze the performance issues of the processor and classify the control unit implementation techniques.
CO4	Categorize the hierarchical memory system and examine the virtual memory implementation techniques.
CO5	Compare the different I/O data transfer techniques, and describe the different ways of communication among I/O devices and standard I/O interfaces.

	Mapping of Course outcomes with Program outcomes KCS302: Computer Organization and Architecture											
	Program	m outcom	nes(PO)	II)	-					9)111	×	
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO11	PO12
CO1	3	3	2	1	2	1	-	-	1	-	1	1
CO2	3	3	3	1	3	1	-	-	1	-	1	1
CO3	2	2	2	1	3	1	-	-	1	-	1	1
CO4	2	2	2	1	1	1	-	-	1	-	1	1
CO5	2	2	2	1	1	1	-	-	1	-	1	1
Average	2.4	2.4	1.6	1	2	1	1	-	1	-	1	1

Director College
R.D. Engineering
Duhai, Ghaziabad

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

COURSE OUTCOME (2022-2023)

B. Tech II(Semester III)

KCS303: Discrete Structures & Theory of Logic

CO	Course Outcomes
CO1	Acquire Knowledge of Logical Notations which is used to define and understand the basic fundamental mathematical concepts such as sets, relations, functions.
CO2	Discuss various structures and properties of modern algebra.
CO3	Employ logical abilities such as reasoning to set up mathematical models for real life problems by applying advanced counting and computing techniques.
CO4	Demonstrate various problems in the field of computer science using trees and graphs.
CO5	Design a solution with the help of induction hypotheses, simple induction proofs and recurrences.

			ing of (comes		
	Ducana	×	KCS303	: Discr	ete Str	ucture	8 & 1 n	eory of	Logic			
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO11	PO12
CO1	3	2	2	3	2	2	1	1	1	1	1	2
CO2	3	3	3	3	2	2	1	1	1	1	1	2
CO3	3	2	2	3	3	2	2	1	1	1	1	2
CO4	3	3	2	2	3	2	2	1	1	1	1	2
CO5	3	2	2	2	3	2	2	1	1	1	1	2
Average	3	2.4	2.1	2.6	2.6	2	1.6	1	1	1	1	2

Director College
R.D. Engineering Spad

R.D. Duhai, Gnaz Spad

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

COURSE OUTCOME (2022-2023)

B. Tech II (Semester III)

KNC302: Python Programming

CO	Course Outcomes
CO1	Students are able to understand and read and write simple Python programs.
CO2	Students are able to understand and develop Python programs with conditionals and loops.
CO3	Students are able to understand and define Python functions and to use Python data structures — lists, tuples, dictionaries.
CO4	Students are able to understand and do input/output with files in Python.
CO5	Students are able to understand and do searching, sorting and merging in Python.

		Mapp	ing of (Course	outco	omes v	vith P	rograr	n outc	omes		
			KNC3	02: Py	thon l	Progra	mmin	ıg				
				I	Progran	n outcor	nes(PO))				
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO11	PO12
CO1	2	3	3	-	3	-	3	2	2	-	-	3
CO2	3	3	3	2	3	2	2	2	3		-	3
CO3	3	3	2	3	3	3	3	2	3	-	-	3
CO4	3	3	3	3	3	3	2	2	3	-	->	3
CO5	3	3	3	3	3	3	2	2	3	-	-	3
Average	2.8	3	2.8	2.75	3	2.7	2.4	2	2.8	-	-	3

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

COURSE OUTCOME (2022-2023)

B. Tech II(Semester III)

KCS351: Data Structure Lab

CO	Course Outcomes
CO1.	Implement various Sorting and Searching Algorithms.
CO2.	Analyze the recursive implementation of different sorting and searching algorithms.
CO3.	Implement various data Structure using static and dynamic memory allocation.
CO4.	Demonstrate various operations like traversal, insertion, deletion on tree data structure.
CO5.	Design and Implement practical applications based on graphs and shortest paths.

Mapping of Course outcomes with Program outcomes KCS351: Data Structure Lab Program outcomes(PO) \mathbf{CO} PO₁ PO9 PO11 PO₃ PO₄ PO₅ **PO6** PO7 PO8 **PO12** PO₁ PO₂ **CO1** CO₂ CO₃ CO₄ CO₅ 2.8 Average

Director College R.D. Engineering Ghaziabad Duhai, Ghaziabad

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

COURSE OUTCOME (2022-2023)

B. Tech II(Semester III)

KCS352: Computer Organization Lab

CO	Course Outcomes
CO1.	Examine the output of the basic logic gates for different combinations of input.
CO2.	Design and simulate the combinational circuits for binary arithmetic (such as adders, subtractors, and multiplier) and code converter
CO3.	Design and simulate combinational circuits for encoders/decoders and selection devices multiplexers/de-multiplexersusing logic gates
CO4.	Design and simulate the basic building block of the sequential circuits (i.e. SR and D Flip Flops) using logic gates.
CO5.	Design and simulate the 2-bit Arithmetic Logic Unit using logic gates.

		Mapp	ing of (Course	outco	omes v	vith P	rogran	n outc	omes		
			K	CS352	: Coi	mpute	er Org	ganiza	tion l	Lab		
				1	Progran	n outcor	nes(PO))				
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO11	PO12
CO1	3	2	2	1	3	2	-		1	-	1	1
CO2	3	2	3	1	3	2	-	-	1	-	1	1
CO3	2	2	3	1	3	1	-	-	1	-	1	1
CO4	2	2	3	1	2	1	-	-	1	-	1	1
CO5	2	2	3	1	2	1	-	×-	1	-	1	1
Average	2.4	2	2.8	1	2.6	1.4	-	-/	1 eerin	-	1	1

Director College R.D. Engineering Ghaziabad

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

COURSE OUTCOME (2022-2023)

B. Tech II(Semester III)

KCS353: Discrete Structure and Logic Lab

CO	Course Outcomes
CO1.	To Implement various Set operations.
CO2.	To Demonstrate various basic Maple commands.
CO3.	To Implement various Inductive techniques, Recursive Techniques and expected value problems using Maple script.
CO4.	To Design and Implement practical applications based on graphs and shortest paths.
CO5.	To Implement various programming problems based on binary search.

Mapping of Course outcomes with Program outcomes KCS353: Discrete Structure and Logic Lab Program outcomes(PO) \mathbf{CO} PO₁ PO8 PO9 PO11 PO12 PO₄ PO₅ PO₆ **PO7** PO₂ PO₃ PO₁ CO₁ CO₂ CO₃ CO₄ CO₅ 2.6 2.6 1.6 2.4 2.2 Average

Director

R D. Engineering College

R D. Engineering Charlahad

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

COURSE OUTCOME (2022-2023)

B. Tech II(Semester III)

KCS354: Mini Project or Internship Assessment

CO	Course Outcomes
CO1.	Students acquire 'real' working environment and get acquainted with the organizationstructure,
	business operations and administrative functions.
CO2.	Students develop hands-on experience in the student's related field so that they can relate andreinforce
	what has been taught at the institute.
CO3.	Students acquire knowledge of cooperation and to develop synergetic collaboration betweenindustry
	and the institute in promoting a knowledgeable society.
CO4.	Students get stage for the future recruitment by the potential employers and get awareness of the social,
	cultural, global and environmental responsibility as an engineer.
CO5.	Students acquire presentation and demonstration skills to effectively communicate the progressof the
	work to peers and superiors using audio/video, software tools.

-		Mapp	ing of (Course	outco	omes v	vith P	rograr	n outc	omes		
KCS3	KCS354 : Mini Project or Internship Assessment											
				I	Progran	n outcor	nes(PO))				
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO11	PO12
CO1	3	2	2	2	3	3	-	-	3	2	2	3
CO2	3	3	2	3	3	3	3	3	2	2	2	3
CO3	3	3	2	2	3	3	-	3	2	2	2	3
CO4	3	3	3	2	-	3	3	-	3	2	-	3
CO5	3	2	2	-	3		-	3	3	-	2	(*
Average	3	2.6	2.2	2.25	3	3	3	3	2.6	2	2	3

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

COURSE OUTCOME (2022-2023)

B. Tech II(Semester IV)

KAS402: MATH IV

\mathbf{CO}	Course Outcomes
CO1	Remember the concept of partial differential equation and to solve partial differential equations.
CO2	Analyze the concept of partial differential equations to evaluate the problems concerned with partial differential equations.
CO3	Understand the concept of correlation, moments, skewness and kurtosis and curve fitting.
CO4	Remember the concept of probability to evaluate probability distributions.
CO5	Apply the concept of hypothesis testing and statistical quality control to create control charts.

		Mapp	ing of	Course	e outc	omes v	with P	rograi	m out	comes		
				KA	S402:	MAT	H IV					
CO]	Progran	n outco	mes(PO)				
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO11	PO12
CO1	2	2	2	-	2	-	-	-	_	-	-	1
CO2	3	3	2	2	-	-				-		1
CO3	2	2	2	2	-	-	-	-	•	-	1	1
CO4	2	2	-	2	2	-	-	-	-	-	1	1
CO5	2	2	-	-	2	-	1	-	.=	-	2	1
Average	2.2	2.2	2	2	2	0.	1	-	-	-	1.33	1

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

COURSE OUTCOME (2022-2023)

B. Tech II(Semester IV)

KAS 401: TECHNICAL COMMUNICATION

CO	Course Outcomes
CO1	Students will be enabled to understand the nature and objective of Technical Communication relevant for the work place as Engineers.
CO2	Students will utilize the technical writing for the purposes of Technical Communication and its exposure in various dimensions.
CO3	Students would imbibe inputs by presentation skills to enhance confidence in face of diverse audience.
CO4	Technical communication skills will create a vast know-how of the application of learning to promote their technical competence.
CO5	It would enable them to evaluate their efficacy as fluent & efficient communicators By learning the voice-dynamics.

		Mapp	ing of	Course	e outc	omes	with P	rogra	m out	comes	·	
		KAS	S 401 :	TEC	HNIC	CALC	COMN	MUNI	CAT	ION		
СО	Progra	m outcon	nes(PO)					-				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO11	PO12
CO1	1	2	3	1	2	1	2	2	-	2	-	2
CO2	1	2	3	1	2	2	2	1		2	-	2
CO3	1	1	2	1	1	2	2	2	-	2	-	3
CO4	2	1	3	2	1	1	2	1	-	2	-	3
CO5	1	1	2	1	2	1	1	2	-	2	•:	2
Average	1.2	1.4	2.6	1.2	1.6	1.4	1.8	1.6	-	2	-	2.4

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

COURSE OUTCOME (2022-2023)

B. Tech II (Semester IV)

KCS403: Introduction to Microprocessor

CO	Course Outcomes
CO1	Apply a basic concept of digital fundamentals to Microprocessor based personal computer system.
CO2	Analyze a detailed s/w & h/w structure of the Microprocessor.
CO3	Illustrate how the different peripherals (8085/8086) are interfaced with Microprocessor.
CO4	Analyze the properties of Microprocessors(8085/8086)
CO5	Evaluate the data transfer information through serial & parallel ports.

		Mapp	ing of (Course	e outco	omes v	vith P	rograi	n outc	omes		
			KCS40	03: int	roduc	tion to	Micr	oproc	essor			
]	Progran	n outco	mes(PO)				
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO11	PO12
CO1	2	2	3	2	2	3	2	1	2	1	1	2
CO2	2	3	2	2	2	3	2	1	2	1	1	2
CO3	3	3,	3	2	3	3	3	1	2	1	1	3
CO4	3	2	3	2	3	3	3	1	3	1	1	3
CO5	2	2	3	2	3	3	3	3	3	1	1	3
Average	2.4	2.4	2.8	2	2.6	3	2.6	1.4	2.4	1	1	2.6

Head OSE OSE

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

COURSE OUTCOME (2022-2023)

B. Tech II (Semester IV)

KCS401: Operating Systems

CO	Course Outcomes
CO1	Understand the structure and functions of OS
CO ₂	Learn about Processes, Threads and Scheduling algorithms.
CO ₃	Understand the principles of concurrency and Deadlocks
CO4	Learn various memory management scheme
CO5	Study I/O management and File systems.

		Mapp	ing of (Course	outco	omes v	vith P	rograi	n outc	omes			
			KCS40	01: Op	eratin	ig Syst	tems						
60	Program outcomes(PO)												
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO11	PO12	
CO1	1	1	1	1	1	1	1	1	1	1	1	3	
CO2	2	1	2	2	3	-	-	-	1	3	2	2	
CO3	3	3	1	3	3	-	-	-	1	3	3	3	
CO4	3	3	1	3	3	-	_	-	1	3	2	2	
CO5	3	2	1	2	3	1	-	-	1	3	3	3	
Average	2.4	2	1.2	2.2	2.6	1	1	1	1	2.6	2.2	2.6	

And head of Head of Core

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

COURSE OUTCOME (2022-2023)

B. Tech II (Semester IV)

KNC401: Computer System Security

CO	Course Outcomes
CO1	Students acquire knowledge to recognize software bugs that pose cyber security threatsand to explain how to fix the bugs to mitigate such threats
CO2	Students acquire knowledge to define cyber attack scenarios to web browsers and webservers and to explain how to mitigate such threats
CO3	Students acquire knowledge to discover and explain mobile software bugs posing cybersecurity threats, explain and recreate exploits, and to explain mitigation techniques.
CO4	Students acquire knowledge to articulate the urgent need for cyber security in critical computer systems, networks, and world wide web, and to explain various threat scenarios
CO5	Students acquire knowledge to the well known cyber attack incidents, explain the attack scenarios, and apply mitigation techniques.

		Mappi	ng of C	Course	outco	mes v	vith P	rograi	m out	comes		
KNC	401: C	ompute	r Syste	m Sec	urity							
	Prograi	n outcom	es(PO)									
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO11	PO12
CO1	2	3	2	3	2	3	-	2	-	-	-	3
CO2	2	3	2	2	3	-	-	2	-	-	-	3
CO3	3	3	2	2	2	-	-	2	-	-	-	3
CO4	2	2	2	2	3	-	-	2	-	-	=:	3
CO5	2	2	2	2		-	-	2	(=	-	-	3
Average	2.2	2.6	2	2.2	2.5	3	-	2	_	ineery	-	3

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

COURSE OUTCOME (2022-2023)

B. Tech II (Semester IV)

KCS402: Theory of Automata and Formal Languages

CO	Course Outcomes
CO1	able to understand and construct finite state machines
CO2	able to prove the equivalence of languages described by finite state machines and regular expressions.
CO3	able to construct pushdown automata and the equivalent context free grammars
CO4	able to prove the equivalence of languages described by pushdown automata and context free grammars.
CO5	able to construct Turing machines and Post machines.

		Mapp	ing of (Course	outco	omes v	vith P	rograr	n outc	omes			
	KCS402: Theory of Automata and Formal Languages												
	Program outcomes(PO)												
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO11	PO12	
CO1	3	3	3	2	3	-	-	=	-	2	-	3	
CO2	3	3	3	2	3	-	-	-	-	2	-	3	
CO3	3	3	3	2	3	-	-	-	-	2	-	3	
CO4	3	3	3	2	3	-	-	-	-	2	-	3	
CO5	3	3	3	2	3	-	-	-	-	2	-	3	
Average	3	3	3	2	3	g=	-	-	-	2	-	3	

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

COURSE OUTCOME (2022-2023)

B. Tech II(Semester IV)

KCS451: Operating System Lab

CO	Course Outcomes
CO1.	Students are familiarized with the operating system modules by implementing various process
	scheduling and memory management algorithms.
CO2.	Students simulate various CPU Scheduling Algorithms (FCFS, SJF, RR, Priority, Multilevel queue) and compare their performance.
CO3.	Students stimulate banker's algorithms for deadlock avoidance, prevention.
CO4.	Students implement various page replacement algorithms for FIFO, LRU, andoptimal page replacement and do a comparative study.
CO5.	Students implement and evaluate different disk scheduling algorithms (FCFS, SSTF, SCAN).

		Mapp	ing of (Course	outco	omes v	vith P	rograr	n outc	omes		
			K	CS451	: Op	eratin	g Sys	tem L	ab			
				1	Progran	1 outcor	nes(PO))				
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO11	PO12
CO1	3	3	3	3	2	2	3	-	-	-	2	3
CO2	3	3	3	2	2	2	3	i .	-	-	2	3
CO3	3	3	3	3	2	2	3	-	-	-	2	3
CO4	3	3	3	3	2	2	3	-	-	-	2	3
CO5	3	3	3	2	2	2	3	-	•	-	2	3
Average	3	3	3	2.6	2	2	3	-	-	-	2	3

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

COURSE OUTCOME (2022-2023)

B. Tech II(Semester IV)

KCS452: Microprocessor Lab

CO	Course Outcomes
CO1.	Students will be able to understand and 8085 Microprocessor based system.
CO2.	Students will be able to execute the string (ascending/descending) using 8085 Microprocessorkit.
CO3.	Students will be able to implement the conversion of different data types (BCD to binary, Hexto ASCII, and vice versa).
CO4.	Students will be able to apply the use of 8085, 8255, 8253 and 0800 in different applications(square wave/triangular/saw-tooth generation)
CO5.	Students will be able to develop serial communication between two 8085 through RS-232 C port using 8251.

		Mapp	ing of (Course	outco	omes v	vith P	rograr	n outc	omes		
			K	CS452	: Mi	cropr	ocesso	r Lab)			
]	Progran	n outcor	nes(PO))				
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO11	PO12
CO1	2	3	2	2	-	-	-	-	2		2	2
CO2	2	2	3	2	2	-	-	-	2	2	2	2
CO3	2	2	3	2	2	-	-	-	2	2	2	2
CO4	2	2	2	2	2	Te.	2	-	2	2	2	2
CO5	2	2	2	2	2	2		2	3	2	2	2
Average	2	2.2	2.4	2	2	2	2	2	2.2	2	2	2

Director College

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

COURSE OUTCOME (2022-2023)

B. Tech II(Semester IV)

KCS453: Python Programming Lab

CO	Course Outcomes
CO1.	Students are able to describe the numbers, math functions, strings, list, tuples and dictionaries in python
CO2.	Students acquire the skills to apply different decision making statements and functions in python
CO3.	Students are able to interpret object oriented programming in python
CO4.	Students develop skill to understand and summarize different file handlingoperations
CO5.	Students demonstrate the ability to design GUI applications in python andevaluate different database operations

		Mapp	ing of	Course	e outc	omes v	vith P	rograi	n outc	comes			
			KCS	453 :]	Pytho	n Pro	gramı	ming	Lab				
CO	Program outcomes(PO)												
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO11	PO12	
CO1	3	2	2	3	3	2	3	-	-	-	3	3	
CO2	3	2	3	3	2	3	1	n=	-	-	3	3	
CO3	3	2	3	2	3	3	3	-	-	-	3	2	
CO4	3	2	3	2	1	2	1	-	-	-	2	3	
CO5	3	2	3	-	3	3	2	æ	-	-	2	3	
Average	3	2	2.8	2.5	2.4	2.6	2	-	-:	-	2.6	2.8	

Director College R.D. Engineering Chaziabad Duhai, Ghaziabad

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

COURSE OUTCOME (2022-2023)

B. Tech III (Semester V)

KCS501: Database Management System

CO	Course Outcomes
CO1	Apply knowledge of database for real life applications.
CO ₂	Apply query processing techniques to automate the real time problems of databases.
CO3	Identify and solve the redundancy problem in database tables using normalization.
CO4	Understand the concepts of transactions, their processing so they will familiar with broad range of database management issues including data integrity, security.
CO5	Design, develop and implement a small database project using database tools.

Mapping of Course outcomes with Program outcomes

KCS501: Database Management System

СО	Progra	m outcon	nes(PO)									
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	2	1	1	2	2	2	3	2
CO2	3	3	3	3	2	1	1	1	2	2	3	2
CO3	3	3	3	3	2	1	1	1	2	2	2	2
CO4	3	2	3	3	2	2	2	1	2	2	2	2
CO5	2	2	3	3	2	2	2	2	2	2	2	2
Average	2.8	2.6	3	3	2	1.4	1.4	1.4	2	2	2.4	2

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

COURSE OUTCOME (2022-2023)

B. Tech III (Semester V)

KCS503: Design and Analysis of Algorithm

CO	Co	ourse O	utcomes	8								
CO1	Understa	nd the de	esigning	new alg	orithms	, prove	them c	orrect, a	and ana	lyze thei	ir asympt	otic and
	absolute i	runtime ai	ndmemor	y demar	ıds.							
CO ₂	Apply the	algorithm	n to solve	the prob	olem and	l prove t	hat the a	algorithr	n solves	the prob	lem corre	ectly.
CO3	Analyze t									s efficie	nt, and k	know by
CO4		d design 1		-	•					gorithms	•:	
CO5	Examine recursion.								s and ap	plying th	ne techniq	ues of
		Mapp	ing of (Course	outco	omes v	vith P	rograi	n out	comes		
KCS	5503 : I	Design	and A	nalysi	s of A	lgorit	hm					
60	Progra	m outcon	nes(PO)							- 1		
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	2	1	1	-	-	-	1	3
CO2	3	3	3	3	2	1	1	-	-	-	1	3
CO3	3	3	2	2	3	1	1	-	-	-	1	2
CO4	3	3	3	3	3	1	1	-	-	-	1	2
CO5	3	3	3	3	3	1	1	-	-	-	1	3

2.8

2.8

3

3

Average

2.6

Director College R.D. Engineering College Duhai, Ghaziabad 2.6

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

COURSE OUTCOME (2022-2023)

B. Tech III (Semester V)

KCS502: Compiler Design

CO	Course Outcomes
CO1	Acquire knowledge of different phases and passes of the compiler and also able to use the compiler tools like LEX,YACC, etc. Students will also be able to design different types of compiler tools to meet the requirements of the realistic constraints of compilers.
CO2	Understand the parser and its types i.e. Top-Down and Bottom-up parsers and construction of LL, SLR, CLR, and LALR parsing table.
CO3	Implement the compiler using syntax-directed translation method and get knowledge about the synthesized and inherited attributes.
CO4	Acquire knowledge about runtime data structure like symbol table organization and different techniques used in that.
CO5	Understand the target machine's runtime environment, its instruction set for code generation and techniques used for code optimization.
	Mapping of Course outcomes with Program outcomes
KCS	502 : Compiler Design
	Program outcomes(PO)

СО	Program	m outcon	nes(PO)									
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	2	-	2	3	X=1	2	2	2
CO2	3	3	3	3	3	-	-	3	-	3	2	2
CO3	3	3	3	3	3	-	2	2	2	3	2	3
CO4	3	3	3	3	3	i-	2	3	2	3	2	3
CO5	3	3	3	3	3	-	2	3	2	3	3	2
Average	3	3	3	3	2.8	•	2	2.8	neerin	2.8	2.2	2.4

Director College R.D. Engineering Chaziabad Duhai, Ghaziabad

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

COURSE OUTCOME (2022-2023)

B. Tech III (Semester VI)

KCS 054: Object Oriented Programming

CO	Cou	rse Out	comes									
CO1	Studen object	ts are abl	le to Und programi	erstand ming to	the app	olication nent app	n develo	opment 1	and ana	alyze the	e insights	of
CO2	Studen System	ts are abl	le to underal)	erstand,	analyz	e and a	oply the	role of				epts (i.e.
CO3	Studen inherita	ts are ablance)	e to unde	erstand,	analyz	e and ap	oply oo	ps conc	epts (i.e	e. abstra	ction,	
CO4	Studen oriente	ts are abl	e to learn	n conce	pts of C	++ for	underst	anding	the imp	lementa	tion of o	bject
CO5	Studen probler	ts are abl n.	e to unde	erstand	the obje	ect orier	nted app	oroach t	o imple	ement re	al world	
		Mapp	ing of	Course	e outc	omes v	with P	rogra	m out	comes		
			KCS 0	54: O	bject	Orien	ted P	rogra	mmin	g		
СО	Prograi	n outcom	ies(PO)									
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	3	3	2	2	2	-	-	-	2	2
CO2	3	2	3	3	2	2	2	-	-	-	2	2
CO3	3	2	3	3	2	2	2	s: = .		-	2	2
CO4	3	2	3	3	2	2	2	-	-	-	2	2
CO5	3	2	3	3	2	2	2	-	-	-	2	2
Average	3	2	3	3	2	2	2	-	n=	-	2	2

Angineering College Co

CO₄

CO₅

Average

R.D. ENGINEERING COLLEGE, GHAZIABAD

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

COURSE OUTCOME (2022-2023)

B. Tech IV (Semester VII)

KCS 056: Application of Soft Computing

		s. 4	XCS 03	o. Ap	рпсат	1011 01	S011 (ompi	iting			
CO	C	ourse O	utcome	S								
CO ₁	Students	are able	to identi	ify and	describe	e soft c	computir	ng techr	niques a	nd their	roles in	building
	intelligen making.	t machine	es and un	derstand	the co	ncepts o	of neura	l netwo	rks to a	chieve hu	ıman like	decision
CO ₂	Students	are able to	apply ne	eural net	works to	pattern	classifi	cation a	nd regre	ssionnro	hlems	
CO ₃	Students	understan	d and lear	n fuzzy i	logic cor	ncepts ar	nd reaso	ning to b	andle u	ncertaint	v.	
CO4	Students uncertaint											
CO5	Students a	s are able recognize the feasibility of applying a soft computing methodology for a particular and learn to apply genetic algorithms to combinatorial optimization problems.										
	problem a	nd learn t	o apply ge	enetic al	gorithm	s to com	binatori	al optim	izationn	roblems	gy for a	oarticulai
			ing of (
KCS	056: Ap	plicati	on of S	oft Co	mputi	ing						
CO	Progra	m outcon	nes(PO)									
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	1	2	2	-	-		-	-	•	2
CO2	3	3	2	3	3	2	-		-	-	_	2
CO3	3	2	2	2	2	-	-	-	-	-		2

Director
R.D. Engineering College
Duhai, Ghaziabad

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

COURSE OUTCOME (2022-2023)

B. Tech III (Semester V)

KNC 501: Constitution of India

CO	C	ourse O	utcome	S				-			·	
CO1	Identify a	and explo	re the bas	sic featur	res and 1	modaliti	es about	Indian	constitut	ion.	-,	
CO2	Differenti	ate and re	elate the f	unctioni	ng of In	dian par	liamenta	ary syste	em at the	e center a	and state 1	evel.
CO3	Differenti	ate differe	ent aspect	ts of Ind	ian Lega	al Syster	n and its	related	bodies.			
CO4	Discover	and appl	y differer	nt laws a	nd regu	lations r	elated to	engine	ering pra	actices.		
CO5	Correlate	role of er	ngineers v	with diff	erent or	ganizatio	ons and	governa	nce mod	lels		
		Mapp	ing of (Course	outco	omes v	vith P	rogra	m out	comes		
KNC	501: (Constit	ution	of Ind	ia							
60	Progra	m outcon	nes(PO)									
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	-	-	-	-	-	-		-	-	-	-	-
CO2	-		-	2	2	-	3	3	-	-	2	3
CO3	-	-	-	2	2	-	3	3	-	-	2	3
CO4	-	-	-	2	2	-	3	3	-	-	2	3
CO5	-	-	-	2	2	-	3	3	n=	-	2	3
Average		-	_	2	2		3	3	_	_	2	3

Granabad*

R.D. Engineer Codlege

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

COURSE OUTCOME (2022-2023)

B. Tech III (Semester V)

KCS551: DBMS Lab

CO	Course Outcomes
CO1	Students can explain the features of relational database and SQL.
CO2	Students can design ER Model for a database for a given real timeapplication.
CO3	Students can create and populate an RDBMS for a given problem domain with constraints and keys using SQL.
CO4	Students can apply data manipulation language to query, update andmanage the database.
CO5	Students will understand the concepts of database security and integrity.

Mapping of Course outcomes with Program outcomes

KCS551: DBMS Lab

СО	Program	m outcon	nes(PO)									=							
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12							
CO1	3	3	3	3	2	-	2	3	=.	2	2	2							
CO2	3	3	3	3	3	_	_	3	-	3	2	2							
CO3	3	3	3	3	3	-	2	3	2	3	2	3							
CO4	3	3	3	3	3	-	2	3	2	3	2	3							
CO5	3	3	3	3	3	-	2	3	2	3	3	3							
Average	3	3	3	3	2.8	-	2	3	2	2.8	2.2	2.6							

Director College
R.D. Engineering Chazatad
Duhal. Ghazatad

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

COURSE OUTCOME (2022-2023)

B. Tech III (Semester V)

KCS553: DAA Lab

CO	Course Outcomes
CO1	Students are able to analyze the performance of various algorithms in best case, average case and worst case. Students are able to implement various sorting, searching and graph traversal algorithms.
CO ₂	Students develop better understanding of advanced data structures likerbtree, heaps and btrees.
CO3	Students acquire skill to identify the problem given and design the algorithm using various algorithm design techniques.
CO4	Students develop better understanding of optimization techniques like dynamic programming, backtracking and branch and bound and their classical problems.
CO5	Students understand the importance of different algorithmic paradigms by comparing the performance of different algorithms for same problemin team.

Mapping of Course outcomes with Program outcomes

KCS553: DAA Lab

~~	Program	m outcom	es(PO)															
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12						
CO1	3	3	3	3	3	-	3	2	3	3	3	3						
CO2	3	3	3	3	3	-	3	2	3	3	3	3						
CO3	3	3	3	3	3	-	3	2	3	3	3	3						
CO4	3	3	3	3	3	2	3	2	3	3	2	2						
CO5	3	3	3	3	3	2	3	2	3	3	3	3						
Average	3	3	3	3	3	2	3	2	3	3	2.8	2.8						

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

COURSE OUTCOME (2022-2023)

B. Tech III (Semester VI)


KCS552: Compiler Design Lab

CO	Course Outcomes
CO1	Students are able to gain knowledge about language processingTools like LEX and YACC.
CO2	Students are able to check whether regular expressions belong togrammars or not.
CO3	Students are able to understand the concepts like grammars, languages, operators and they are also able to check whethergrammar is ambiguous or not and its removal using left recursion.
CO4	Students are able to understand various parsing techniques likeshift reduce, LR parsing.
CO5	Students are able to understand code optimization algorithms.

Mapping of Course outcomes with Program outcomes

KCS552: Compiler Design Lab

CO	Prograi	Program outcomes(PO)												
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	3	3	3	3	2		-	3	3	2	_	2		
CO2	3	3	3	3	3	-	-	3	3	3	- I	2		
CO3	2	3	3	3	3	-	-	3	3	3	-	3		
CO4	3	3	3	3	3	=>	-	3	3	3	-	3		
CO5	3	3	3	3	3	- %	-	3	3	3	/ -	3		
Average	2.8	3	3	3	2.8	-	-	3	3	2.8	-	2.6		

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

COURSE OUTCOME (2022-2023)

B. Tech III (Semester V)

KCS554: Mini Project or Internal Assessment

CO	Course Outcomes
CO1	Students acquire 'real' working environment and get acquainted with the organization structure, business operations and administrative functions.
CO2	Students develop hands-on experience in the student's related field so that they can relate and reinforce what has been taught at the institute.
CO3	Students acquire knowledge of cooperation and to develop synergetic collaboration between industry and the institute in promoting a knowledgeable society.
CO4	Students get stage for the future recruitment by the potential employers and get awareness of the social, cultural, global and environmental responsibility as an engineer.
CO5	Students acquire presentation and demonstration skills to effectively communicate the progress of the work to peers and superiors using audio/video, software tools.

Mapping of Course outcomes with Program outcomes

KCS554: Mini Project or Internal Assessment

СО	Program outcomes(PO)													
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	3	2	2	2	3	3	-	-	3	2	2	3		
CO2	3	3	2	3	3	3	3	3	2	2	2	3		
CO3	3	3	2	2	3	3	-	3	2	2	2	3		
CO4	3	3	3	2	-	3	3	-	3	2	=2	3		
CO5	3	2	2	-	3	-	-	3	3	-	2	-		
Average	3	2.6	2.2	2.25	3	3	3	3	2.6	2	3	3		

Director College Director College R.D. Engineering Ghaziabad

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

COURSE OUTCOME (2022-2023)

B. Tech III (Semester VI)

KCS 602: Web Technology

							ciiio	logy				
CO	Co	ourse O	utcome	S					_			
CO1	Apply the	e knowled	dge of the oment	interne	t and re	lated in	ternet co	oncepts t	that are	vital in ι	ınderstan	ding web
CO2	Understar workings	nd, analyz of thewel	e, and ap and its a	ply the pplication	role of i	markup	languag	es like l	HTML,	DHTML	, and XN	1L in the
CO3	Use web	application	on develo	pment s	software he mark	tools i	.e. XMI	L, Apac sites.	he Tom	cat etc.	and iden	tifies the
CO4	Understand, analyze, and build dynamic web pages using client-side programming JavaScript and develop the webapplication using servlet and JSP.											
CO5	Understand the impact of web designing by database connectivity with JDBC											
KCS	602 : `		ing of (echnol		outco	omes v	vith P	rograi	n out	comes		
СО	Program	m outcon	nes(PO)									
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	1	3	3	2	1	-	2	2	1	3
CO2	2	3	2	1	3	1	-	-	3	2	3	2
The second second									-			

CO3 CO₄ CO₅ 2.6 2.4 1.6 Average 1.3 1.8 2.2 2.4

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

COURSE OUTCOME (2022-2023)

B. Tech III (Semester VI)

KCS 603: Computer Network

CO	Cor	urse Ou	tcomes										
CO1	Under transm techno	stand the ission of logies.	practical i data takes	place, r	ietwork	topologi	ies signa	l coding	, Ethern	et, ISDN	ar with ho I and swit	ching	
CO2	unders	ois and sii	f how con	nputers	cocols ar	nong da	ta comm	unicatio	n netwo	rke The	control, N y also exi nployed to	. 11. 14. 41.	
CO3	mainta	in compu	er and ne	network tworkins	. Also re g system	eveals co	onfidenc	e to wor	k indep	endently	to setup a		
CO4	Learn I demons	Learn how the information is processed and managed at process to process delivery. They can also demonstrate attitudes that are beneficial to maintaining the security of a computer/network system and assisting people to use that system or network through cryptography and firewells.											
CO5	Manage	Manage to skilled with the working and practical knowledge of E-mail, FTP, Telnet, POP, DNS etc. on public and private networks.											
		Mapp	oing of	Cours	e outc	omes	with P	rogra	m out	comes			
			K	CS 60	03: (Comp	uter N	letwo	rk				
СО	Progra	m outcon	ies(PO)										
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	3	3	1	3	1	1	1	1	3		2	
CO2	3	3	3	3	3	1	1-	-	-	3	-	2	
CO3	2	3	3	2	3	-	5 6 =	-	2	2	-	3	
CO4	2	3	2	2	2	1	-	-	-	3	-	2	
CO5	3	2	2	1	3	2	-	-	-	3	-	2	
Average	2.6	2.8	2.6	1.8	2.8	1.3	1	1	1.5	2.8	<u> </u>	2.2	

R. D. Engineering College

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

COURSE OUTCOME (2022-2023)

B. Tech III (Semester VI)

KCS 601: Software Engineering

CO	Course Outcomes												
CO1	Explain	n various s	software o	haracter	istics an	d analy	ze differ	ent softy	vare De	velonme	nt Models		
CO2	Demon	strate the	contents	of a SRS	and ap	oly basic	softwa	re qualit	v				
CO3	Compa	re and cor	ntrast vari	ous met	hods for	softwar	e design	or or en	cccu app	officable s	tanuarus.		
CO4	Formul	ate testing oment and	strategy	for softv	ware sys	tems, en	nploy te	chnique	s such a	s unit tes	ting, Test	driven	
CO5	Manage	e software s software	developr	nent pro	cess ind	ependen velopme	tly as w	ell as in	teams a	nd make	use of	_	
			ing of										
			K	CS 60	1: Soi	ftware	Engi	ineeri	ng				
60	Progra	Program outcomes(PO)											
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	3	3	1	-	-	-	-	-	-	_		
CO2	2	2	3	3	3	-	-	-	-	-	-	-	
CO3	2	2	3	3	3	->:	-	-	2	2	2	2	
CO4	2	2	2	2	2	-	-	1	3	2	1	1	
CO5	2	2	3	1	2	-	-	-	2	2	2	1	
Average	2	2	3	2	2	-	Es.	1	2	2	2	1	

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

COURSE OUTCOME (2022-2023)

B. Tech III (Semester VI)

KCS 061: Big Data

CO	Cou	rse Out	comes			***								
CO1	Demor	istrate kn	owledge	of Big	Data A	nalytics	concep	ots and	its appl	ications	in busine	ess		
CO2	Demon	strate f	unctions	and cor	nponen	ts of M	AP & R	EDUC	E Frame	ework ar	nd HDFS			
CO3	Discus	s Data M	anageme	ent conc	epts in	No SQ	L enviro	nment						
CO4	Explain process of developing Map Reduce based distributed processing applications													
CO5	Explain	Explain process of developing applications using HBASE, Hive, Pig etc.												
		Mapp	ing of	Course	e outc	omes v	with P	rogra	m out	comes				
							ig Dat							
					CD U	o1. D	g Dat	ш						
CO	Program outcomes(PO)													
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	2	-	2	-	3	3	3	3	2	2	3	3		
CO2	3	-	3	= 0	3	3	3	3	3	2	3	2		
CO3	3	-	3	_	3	3	3	3	3	3	3	3		
CO4	3	-	1	-	1	2	3	3	3	-	-	-		
CO5	3	-	3	-	3	3	3	3	3	3	3	3		
Average	3	_	3		3	3	3	3	3	3	3	3		

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

COURSE OUTCOME (2022-2023)

B. Tech III (Semester VI)

KOE 068: Software Project Management

CO	Cou	rse Out	comes										
CO1	Identif estimat	y the protion Mod	oject obj els.	ectives	and th	eir pla	nning,	along v	vith an	alyze va	arious co	st/effort	
CO2		ze & sch		piect act	tivities	to comr	nite crit	ical nat	h for ri	sk analy	cic		
CO3	Monito	or and con	ntrol the	Project	Activit	ies.	oute erre	icai pai	11 101 11	sk allaly	515.		
CO4	Formu	late testir ms of SE	ng object	ives and			nsure g	ood sof	tware o	luality n	nanagem	ent with	
CO5	Config	Configure changes and manage risks using project management advanced tools.											
			KOE 0		-								
СО	Prograi	Program outcomes(PO)											
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	2	2	3	3	3	3	2	2	3	3	-	2	
CO2	3	3	3	3	3	3	3	2	3	2	-	3	
CO3	3	3	3	3	3	3	3	3	3	3	-	3	
CO4	3	1	1	2	3	3	3	-	3	-	2	2	
CO5	3	3	3	3	3	3	3	3	3	3	:-	3	
Average	2.8	2.4	2.6	2.8	3	3	2.8	2.5	3	2.75	2	2.6	

Director College

R.D. Engines

Duhai

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

COURSE OUTCOME (2022-2023)

B. Tech III (Semester V)

KCS 652: Web Technology Lab

CO	C	ourse C	outcome	es									
CO1		gets famil			and CSS	web te	chnolog	ies ford	evelopn	nent and	design of	web	
CO2	Students implement	are able to ntation kn	make co	nsole ba	sed appl	lications	for sol	ving real	lifeprol	olems us	ing syntac	ctical and	
CO3	Students of event	are able to	o design (using JA	GUI bas	ed appli	ponent							
CO4	Students of Multith	are able to reading,	make in File I/O a	teractive nd Exce	GUI ba	sed app	IISINO I A	VA SW	ing com	nonont			
CO5	Students a advance J	are able to	design v	veb base	d applic	eations f	or solvir	o proble	emcannl	vina lena	wledge o	f	
			ing of								1-1		
KCS	652: W	eb Tec	chnolog	gy La	b								
СО	Program outcomes(PO)												
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	3	3	3	3	-	2	-	3	2	3	3	
CO2	3	3	3	3	3	2	2	-	3	-	3	3	
CO3	3	3	3	3	3	-	2	-	3	-	3	3	
CO4	3	3	3	3	3	-	2	-	3	-	3	3	
CO5	3	3	3	3	3	-	2	_	3	-	3	3	
Average	3	3	3	3	3	7-	2		3	2	3	3	

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

COURSE OUTCOME (2022-2023)

B. Tech III (Semester VI)

KCS 653: Computer Network Lab

CO	Course Outcomes
CO1	Students are able to understand and simulate various networktopologies using CISCO packet tracer.
CO2	Students are able to create network in CISCO Packet Tracer usingRouters connected with other network access equipment (like switches and buses) subsequently connected with end devices. Use commands toestablish connectivity among them.
CO3	Students are able to understand and implement network layer protocols (like DHCP, RIP, OSPF) using CISCO packet tracer.
CO4	Students are able to resolve IP address to host name and host name to IP address using JAVA/C.
CO5	Students are able to implement a TCP based Client-Server System forone sided communication in JAVA/C.
	Mapping of Course outcomes with Program outcomes
KCS	653: Computer Network Lab
seat sac	Program outcomes(PO)

СО	Progra	Program outcomes(PO)														
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12				
CO1	2	2	2	2	2	2	2	-	2	-	-	2				
CO2	2	2	2	2	2	2	2	•	2	-	-	2				
CO3	3	3	3	3	2	3	2	_	3	-	-	2				
CO4	3	3	3	3	3	3	2	-	3	-	-	2				
CO5	3	3	2	2	2	3	2	R =	3	-	-	2				
Average	2.6	2.6	2.4	2.4	2.2	2.6	2	-	2.6	•	-	2				

Director R.D. Engineering College Duhai, Ghaziabad

CO₄

CO5

Average

R.D. ENGINEERING COLLEGE, GHAZIABAD

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

COURSE OUTCOME (2022-2023)

B. Tech III (Semester VI)

KCS 651: Software Engineering Lab

			KCS	651: 8	oftwa	are Ei	ıginee	ring l	Lab			
CO	C	Course (Outcom	es								
CO1	Identify a	ambiguiti al and nor	es, incons	sistencie	s and in	complet	eness fro	om a req	uiremen	ts specif	ication ar	id state
CO2		different a	actors and	use cas	es from	a given	problem					
CO ₃	Draw a c	lass diagr	am after i	identifyi	na class	es and a	np					
CO4	Graphica sequence	my repres	ent variou	IS UML	diagram	e and a	cconintia		.1	and iden	tify the lo	gical
CO5	Able to u	se modern	n enginee	ring too	ls for sp	ecificati	epresent	them pi	ctorially	<u> </u>		
KCS CO	651: So							Togra		comes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	1	-	-	-		-	_	-	-
CO2	2	2	3	3	3	-	-	_	-	-	_	-
CO3	2	2	3	3	3	-	-	-	2	2	2	2

Average

2

2

2

2

R.D. ENGINEERING COLLEGE, GHAZIABAD

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

COURSE OUTCOME (2022-2023)

B. Tech IV (Semester VII)

KHU 701: Rural Development

CO	C	ourse O	utcome									
CO1	Students				definiti	ons con	cents or	ad some		· CD 1 I		
CO ₂	Students	will be	able to 1	cnow th	e impo	rtance	etructur	a sioni	e	oikurai i	Developm	ent.
	ccononly	oc also at	ne to iden	HIV & H	ispect th	le impor	tance of	precent	nolinian	0	0.0	
	of India	to design	& formu	late sus	tainable	develor	mental	solution	s of pre	& progra	ims of Go	vernmen
	riicas.										problems	in Kura
CO ₃	Students	will have	a clear id	ea about	the area	a develo	pment p	rograms	and its	impact.		
CO ₄	Students	will be al	ble to acc	uire kno	owledge	& Skil	ls about	rural er	ntrepren	eurshin s	sothat the	v will be
	able to op	t entrepre	neursnip	as maio	career	option.						
CO ₅	Students	will be al	ole to acq	uire kno	owledge	& Skil	ls about	rural er	ntrepren	eurship s	sothat the	v will be
	able to op	t entrepre	neurship	as majoi	career	option.						,
		Mapp	ing of (Course	e outc	omes v	with P	rogra	m out	comes		
KHU	701: Ru	ıral De	velopm	ent								
CO	Progra	m outcon	nes(PO)									
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1		-	2	-	2	2	2	-	2	-	-	2
CO2			2		_							
	-	-	2		2	2	2		2	-	-	2
CO ₃												
	-	-	2	= :	2	2	2	-	2	-	-	2
CO4			_		1880							
	-	-	2	-	2	2	2	-	2	•	- 1	2
CO5	-	_	2	-	2	2	2	_	2	_	-	2

2

CO5

Average

2.6

2.8

1.8

1.3

1.6

R.D. ENGINEERING COLLEGE, GHAZIABAD

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

COURSE OUTCOME (2022-2023)

B. Tech IV (Semester VII)

KCS 071: Artificial Intelligence

CO	C	ourse C	utcome	es								
CO1	Underst	and the co	oncent of	artificial	l intellig	ence, in	telligent	agents,	Compu	ter vision	, Natural	
CO2	Apply b	asic princ lge repres	iples of A	AI in solu	itions th	med sea	arch stra	tegies.	earch			
CO3	Explain t	he concep	ts of supe	ervised i	insuner	rised an	d rainfa	*****	1 .			
CO4	Evaluate classifica	Probabil	istic rea	soning	for un	certainty	y, parai	meter e	estimation	g. on meth	ods and	vario
CO ₅	Analyze v	arious se	arching for	or solutio	ons mac	hine lea	rning to	ohni ave		.~ .		
KCS CO	071: Al	tificial m outcon		gence								
CO	PO1											
		PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO1
CO1	3	PO2	PO3	PO4 3	PO5	PO6	PO7	PO8	PO9 2	PO10	PO11	PO1:
CO1	3											3
		3	3	3	2	3	2		2	2	2	

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

COURSE OUTCOME (2022-2023)

B. Tech IV (Semester VII)

KOE 073: Machine Learning

Course Outcomes
To understand the need for Machine Learning for various problem solving.
To study the various, semi-supervised and unsupervised learning algorithms in machine learning.
To understand latest trends in machine learning.
To design appropriate machine learning algorithms for problem solving.
To understand the need for machine learning for various problem solving.

Mapping of Course outcomes with Program outcomes

KOE 073: Machine Learning

CO	Progra	m outcon	nes(PO)									
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	2	2	9	2	-		= 1	1	2
CO2	3	3	3	2	2	-	2	<u> </u>	12	<u>=</u>	1	2
CO3	3	3	3	2	2	-	2		-	-	1	2
CO4	3	3	3	2	2	-	2	-	-	-	1	2
CO5	3	3	3	2	2	-	2	<u>=</u> 0	-	-	1	2
Average	3	3	3	2	2	-	2		-	_	1	2

Durector College

CO₃

R.D. ENGINEERING COLLEGE, GHAZIABAD

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

COURSE OUTCOME (2022-2023)

B. Tech IV (Semester VII)

KCS 713: Cloud Computing

						ouu C	ompu	ing				
CO	C	ourse O	utcome	S								
CO1	Students models.				define	Cloud C	Computir	ng, diffe	rent Clo	oud servi	ceand de	ploymen
CO2	Students resource i	are able	to under	stand th	e Cloud	d applic	ations v	with the	ir archi	tecture,	vulnerabil	ities and
CO3	Students			oe impo	rtance o	of virtua	lization	along	with the	irtechno	logies	
CO4	Students a Mobile C	are able to	o analyze	the cor	nponent	s of ope	en stack	& Goo	gle Clou	id platfo	rmand ur	nderstand
CO5	Students a	re able to	understa	nd the de	esign &	develop	backup	strategi	es for cl	oud data	hasad on	Faatumaa
KCS	713: Clo		ing of (outco	omes v	vith P	rogra	m out	comes		
СО	Progra	m outcon	nes(PO)									
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	3	-	3	2		-	-	3	2	2
CO2	3	2	3	-	3	2	-:	-	-	3	2	2

CO₄ **CO5** Average

Director

R. D. Engineering College
Duhai, Ghaziabad

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

COURSE OUTCOME (2022-2023)

B. Tech IV (Semester VII)

KCS 751A: Departmental Elective Lab

CO	C	ourse O	utcome	es								
CO1	Student	s are able	to perfo	orm Res	source a	illocatio	on and c	leadlocl	k deteci	ion and	avoidan	ce
CO ₂	1 /	are able				mo a a d						
CO ₃	Students	are able	to undar	etand II	onote p	nocedu.	re call 1	or vario	ous app	lications	3.	
CO4	Students	are able	to Desig	n and b	uild ap	nanism plicatio	n progra	ams on	system. distribi	ited evet	eine	
CO5	Students	are able	to desig	n and b	uild ne	wer dis	tributed	file sys	sterne fo	or ony	enis.	
			ing of (5	
		Тирр			- Oute	Unites !	WILLI P	rogra	m out	comes		
KCS	751A: 1	Departr	nental	Electi	ve La	b						
СО		m outcon				. sa iii	· w					
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO1
CO1	3	3	n_ 8	3	3	3		_			2	2
				1						1	24	
CO2	.3	3	-	3	3	3	-	-		-		
	3	3	-	3	3	3		-	-	-	2 2	2
CO3			-				-	-	-	-	2	2
CO2 CO3 CO4 CO5	3	3	-	3	3	3		-	-	-	2	2

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

COURSE OUTCOME (2022-2023)

B. Tech IV (Semester VII)

KCS 752: Mini Project or Internship Assessment

	CO	Co	urse Ou	tcomes		· · · · · ·									
•	CO1	Students a structure,	acquire 'r	eal' work	-					with th	e organi	zation			
•	CO2	Students or	_							eld so t	hat they	can			
	CO3	Students a collabora society.									edgeable	•			
•	CO4	Students get stage for the future recruitment by the potential employers and getawareness of the social, cultural, global and environmental responsibility as an engineer.													
	CO5	Students acquire presentation and demonstration skills to effectively communicate theprogress of the work to peers and superiors using audio/video, software tools.													
			Mappi	ng of C	Course	outco	mes w	ith Pr	ogran	n outc	omes				
	KCS	752: Mi	ni Proj	ect or I	ntern	ship A	ssessr	nent							
	Sattrange.	Program	n outcom	es(PO)											
	CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
	CO1	-	3	3	2	-	3	3	3	3	3	3	3		
	CO2	-	-	2			3	3	3	3	3	3	2		
	CO3	-	2	æ	20	3	2	3	3	2	3	2	3		
	CO4	3 5	-	3	-	-	3	3	3	3	3	2	2		
	CO5	2	2	2	2	3	-	2	2	2	-	3	2		
	Average	2	2.3	2.25	2	3	2.7	2.8	2.8	2.6	3	2.6	2.4		

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

COURSE OUTCOME (2022-2023)

B. Tech IV (Semester VII)

KCS 753: Project I

CO	Co	urse O	itcomes								· · · · ·	V			
CO1	The stud	ents are a	able to w	ork effe	ectively	in tean	is to ac	compli	sh a cor	nmon go	oal.	,			
CO2	The stud	ents are a	able to de	evelop t	he abili	ty to co	mmuni	cate ef	fectivel	y with a	wide rar	ngeof			
CO3	The stud	ents acqu								asks and	ethical				
CO4		ents appl and its im	•		e for de	velopin	g a bus	iness pl	an for a	an entrej	preneuria	1			
CO5	The students develop the ability of self-learning and apply it in life- long learning.														
	Mapping of Course outcomes with Program outcomes														
KCS	753: Project I														
CO	Program	n outcom	res(PO)						¥						
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12			
CO1	-	-	3	3	3	2	-	-0	3	3	3	3			
CO2	-	-	-	-	-	-	-	-	3	3	2	3			
CO3	3	3	3	3	3	2	<u>.</u>	3	3	3	3	3			
CO4	3	3	3	3	3	-	2	3	2	3	3	2			
CO5	3	3	3	2	3	-	2		3	-	2	3			
Average	3	3	3	2.7	3	2	2	3	2.8	3	2.6	2.8			

Director College

R.D. Engineering abad

Duhai, Ghazabad

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

COURSE OUTCOME (2022-2023)

B. Tech IV (Semester VIII)

KHU 802: Project Management & Entrepreneurship

CO	Co	urse Ou	itcomes											
CO1		s will be neurship		ındersta	and the	need, c	oncept,	progra	m & va	rious sc	hemes re	lated to		
CO2	Students	s will be a	able to de	velop I	nnovati	ve Idea	with su	stainab	le Busi	ness Op	portuniti	es.		
CO3		s will be luring the						Projec	t mana	gement	and rela	ted		
CO4		s will be						method	ds & Te	chnique	s of Proj	ect		
CO5	Students will be motivated & empowered to apply the the concept of Social Entrepreneurship for upliftment of the backward areas.													
	Mapping of Course outcomes with Program outcomes													
KHU	KHU 802: Project Management & Entrepreneurship													
CO	Prograi	n outcom	ies(PO)				4:0							
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1		-	2	-	2	2	2	= 1	2	-	-	2		
CO2		-	2	-	2	2	2	-	2	-	-	2		
CO3	-	-	2	-	2	2	2	-	2	-		2		
CO4		-	2	-	2	2	2	-	2	-		2		
CO5	_	-	2	-	2	2	2	-	2	-	-	2		
Average	-	-	2	-	2	2	2	-8	2	.=.:	-	2		

R.D. ENGINEERING COLLEGE, GHAZIABAD

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

COURSE OUTCOME (2022-2023)

B. Tech IV (Semester VIII)

KOE 085: Quality Management

CO	Co	urse Oi	itcomes	1							0	
CO1	Develop in	n-depth kr	owledge	on vario	ous qual	ity tools	& techr	niques o	f Quality	y Manage	ement.	
CO2	Develop a	n understa	anding on	Quality	Manage	ement p	hilosoph	nies and	framew	orks.		*
CO3	Apply the				niques	for con	trolling,	impro	ving ar	nd meas	uring qu	ality in
66.4	manufactu				1.1		Marine and a				1 .	
CO4	Understan benchmarl				nodolog	ies to ei	inance i	nanager	nent pro	ocesses s	uch as si	x sigma,
CO5	Choose a				nerform	ance ex	cellence	of an C	rganisa	tion and	determin	e the set
CO3											actermini	e the set
		of performance indicators that will algn people with objective of organisation.										
	Mapping of Course outcomes with Program outcomes											
LOF	005.0	-1:4- NA	r									
KOE	085: Qu	ianty M	lanagei	ment								
60	Progra	m outcom	es(PO)									
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	-	-	2	3	2	2	2	2	2	2	3
CO2	3	-	-	2	3	2	3	2	2	2	2	3
CO3	2	-	-	3	2	2	2	2	2	2	2	2
CO4	3	-	-	3	2	2	2	2	2	2	2	2
CO5	2	-	-	2	3	2	2	2	2	2	2	2
Average	2.4	-	-	2.4	2.6	2	2.2	2	2	2	2	2.4

R.D. Engineering College Duhai, Ghaziabad Director

R.D. ENGINEERING COLLEGE, GHAZIABAD

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

COURSE OUTCOME (2022-2023)

B. Tech IV (Semester VIII)

KOE 093: Data Mining and Warehousing

CO	Cour	rse Outo	omes							V.V.		
CO1	Understa	and the fu	nctionalit	y of the	various	data mi	ning and	data wa	arehousi	ng comp	onent	
CO ₂	Appreci	ate the str	engths an	d limitat	tions of	various	data mir	ing and	data wa	rehousin	g models	
CO3		the analyz										
CO4		e different										
CO5	Compar	e differen	t approacl	nes of da	ata ware	housing	and dat	a minin	g with v	arious te	chnologie	s.
		Mapp	ing of (Course	outco	omes v	vith P	rograi	n out	comes		
		ŀ	OE 09	03 : D	ata M	ining	and V	Warel	iousir	ıg		
СО	Program	n outcom	es(PO)									
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	-	2	3	3	2	2	2	2	2	2	2
CO2	3	2	2	2	3	2	-	-	3	-	•	_
CO3	3	3	3	3	3	2	3	3	2	2	-	3
CO4	3	3	3	3	3	3	2	-	2	-	-	-
CO5	-	2	3	2	3	2	2	3	2	-	2	3
Average	3	3	3	3	3	2	2	3	2	2	2	3

R.D. Engineering College Duhai, Ghaziabad

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

COURSE OUTCOME (2022-2023)

B. Tech IV (Semester VIII)

KCS 851: Project II

CO	Co	urse Ou	tcomes									
CO1	The stud	ents are a	able to w	ork effe	ectively	in tean	is to ac	complis	sh a cor	nmon go	oal.	
CO2	The stud	ents are a	able to de	evelop t	he abili	ity to co	mmuni	cate eff	ectivel	y with a	wide ran	ige of
CO3	The stud	ents acqu responsil								asks and	ethical	
CO4		ents appl and its in	57		e for de	velopin	g a bus	iness pl	an for a	an entrej	oreneuria	1
CO5	The students develop the ability of self-learning and apply it in life- long learning.											
	Mapping of Course outcomes with Program outcomes											
KCS	851 : Project II											
CO	Program	n outcom	es(PO)									
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	-	-	3	3	3	2	-	_	3	3	3	3
CO2	-	-	-	-	-	-	-	-	3	3	2	3
CO3	3	3	3	3	3	2	-	3	3	3	3	3
CO4	3	3	3	3	3	-	2	3	2	3	3	2
CO5	3	3	3	2	3	-	2	-	3	-	2	3
Average	3	3	3	2.7	3	2	2	3	2.8	3	2.6	2.8

Director College
R.D. Engineering Chaziabad

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING AVERAGE OF PROGRAM OUTCOMES (2022-2023)

T			Subjects With Cades					Program	n Outco	mes					
S.N.	YEAR	SEMESTER	Subjects With Codes	P01	PO2	PO3	P04	PO5	P06	P07	P08	P09	PO10	P011	P01
		~	DE (KOE 039)	2	2	1.8	-	2	1	2	-	1-	-	1	-
	_	Ë	UHV (KVE 301)	2	2	2	-	2	2	1		2.5		1	-
	Year	III SEMESTER	DSC (KCS 301)	3	3	2.1	2.6	1.8	1.4	1	1	1.2	1.2	1.2	2.1
		E	COA (KCS 302)	2.4	2.4	1.6	1	2	1	1	2	1	_ =	1	1
	2nd	<u> </u>	DSTL (KCS 303)	3	2.4	2.1	2.6	2.6	2	1.6	1	1	1	1	2
			PYTHON (KNC302)	2.8	3	2.8	2.75	3	2.7	2.4	2	2.8		:=	3
1	(CSE)	~	MATH IV (KAS 402)	2.2	2.2	2	2	2	-	1	181	-	-	1.33	1
		IV SEMESTER	TC (KAS 401)	1.2	1.4	2.6	1.2	1.6	1.4	1.8	1.6	:=:	2	-	2.4
	B.Tech	ES.	MICROPROCESSOR (KCS 403)	2.4	2.4	2.8	2	2.6	3	2.6	1.4	2.4	1	1	2.6
	Te	E	OS (KCS 401)	2.4	2	1.2	2.2	2.6	1	1	1	1	2.6	2.2	2.6
	80	8	CSS (KNC 401)	2.2	2.6	2	2.2	2.5	3	1-1	2	-	-	1-1	3
		=	TAFL (KCS 402)	3	3	3	2	3			·	-	2	-	3
STE		~	DMS (KCS 501)	2.8	2.6	3	3	2	1.4	1.4	1.4	2	2	2.4	2
	<u>_</u>	Ë	DAA (KCS 503)	3	3	2.8	2.8	2.6	1	1	-	-	-	1	2.6
	ear	v semester	CD (KCS 502)	3	3	3	3	2.8	-	2	2.8	2	2.8	2.2	2.4
	>	N N	OOP (KCS 054)	3	2	3	3	2	2	2	-	-	-	2	2
	RD	9	ASC (KCS 056)	3	3	2	3	3	2		2		-	-	2
	3	>	CI (KNC 501)	-	-	-	2	2	-	3	3	-	-	2	3
2	(CSE)		WT (KCS 602)	2.6	3	2	2.4	3	1.6	1.3	-	2.2	1.8	2.2	2.4
		LLI In	CN (KCS 603)	2.6	2.8	2.6	1.8	2.8	1.3	1	1	1.5	2.8	-	2.2
	당	W W	SE (KCS 601)	2	2	3	2	2	•		1	2	2	2	1
	B.Tech	2	BD (KCS 061)	3	-	3	-		3	3	3	3	3	3	3
	m	VI SEMESTER	SPM (KOE 068)	2.8	2.4	2.6	2.8	.3	3	2.8	2.5	/3	2.75	2	2.6
		>	IT,CS (KNC 602)	-	2	2	-	-	2	2/0	Engin	2.	-	2	2

ď	- ₹	DMW (KOE 093)	3	3	3	3 2.4	3 2.4	2 2.0	2	3	2	2	2	3
Tec	SEA	QM (KOE 085)	2.4	-	-	2.4	2.6	2	2.2	2	2	2	2	2.4
) t	ź	PME (KHU 802)	-	-	2	:=	2	2	2	-	2	-	:-	2
3 8	5	CC (KCS 713)	3	2	3		3	2			(E	3	2	2
\$	SEM	ML (KOE 073)	3	3	3	2	2	-	2		-	-	1	2
Year	EST	AI (KCS 071)	3	3	2.6	3	2.8	3	1.8	1.3	2	2	1.6	3
	E	RD (KHU 701)		-	2	-	2	2	2		2	-	-	2

Director R.D. Engineering College Duhai, Ghaziabad

SAMPLE OF CO-PO MAPPING

Department of Electronics and Communication Engineering

Engineering Graduates will be able to: -

- 1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- **2. Problem analysis**: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- **3. Design/development of solutions:** Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- **4. Conduct investigations of complex problems:** Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- **5. Modern tool usage:** Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
- **6.** The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- **7. Environment and sustainability:** Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- **8. Ethics:** Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- **9. Individual and team work:** Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- 10. Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- **11. Project management and finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- **12. Life-long learning:** Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.
- COs to be mapped with POs in Matrix form.
- Correlation levels 1, 2, 3 as defined (1: low, 2: Moderate, 3: High).
- COs will be mapped with POs on the basis of above-mentioned levels.
- If there is no correlation, put "-" or left blank or put zero.

Director
R.D. Engineering College
Duhai, Ghaziahad

R.D. ENGINEERING COLLEGE, GHAZIABAD DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING AVERAGE OF PROGRAM OUTCOMES (2022-2023)

	VELE	051150755	AVERAGE OF P			- 1 - 1	5 5 10	Program Out	comes						
S.N.	YEAR	SEMESTER	Subjects/Labs With Codes	PO ₁	PO ₂	PO ₃	PO ₄	PO,	PO ₆	PO ₁	PO ₈	PO,	PO ₁₀	PO ₁₁	PO,
			Math-IV(KAS-302)	2.2	2.2	2	2	2		1				1.33	1
		III SEMESTER	HUMAN VALUE (KVE-301)			134		2 :	1	1	1	3		1	
	2nd Year	MES	ED(KEC-301)	2.2	2.2	1.8	2.2	2.2					-		3
	, pu	E SE	DSD(KEC-302)	3	3	2.8	3	3							3
,	E) 2	=	NAS(KEC-303)	3	3	2	3	3					-		3
1	(ECI	220	SI (KOE-044)	1.6	2	2	2	2				,			1
	B.Tech (ECE)	IV SEMESTER	TC (KAS-401)	1.2	1.4	2.6	1.2	1.6	1.4	1.8	1.6	-	2		2.4
	B.T.	MES	CE(KEC-401)	1.6	2	2	2	2							1
	- 1	V SE	AC(KEC-402)	1.8	1.8	1.4	1.8	1.8		2	2	-		20	3
	×	-	SS(KEC-403)	1.8	3	2	1.8	1.8							2
			IC(KEC-501)	2.6	2.6	2	2.6	2.6				5			3
		TER	MP (KEC-502)	1.8	1.8	1.4	1.8	1.8		1				100	3
	fear	MES	DSP(KEC-503)	2.2	2.2	2.2	2.2	2.2					7.	740	2
	3RD Year	V SEMESTER	VLSI (KEC-053)	2.2	2.2	2.2	2.2	2.2				1.			3
	E) 31		ASD(KEC-056)	1.6	1.8	2	2	2					41	-	1
2	ECE)		D.COMM (KEC-601)	3	3	2.4	3 .	3							3
	B.Tech (TER	CS(KEC-602)	1.4	1.8	1.5	2	2							1.8
	T.	MES	AWP(KEC-603)	1.8	2	2	2	2	Ga.					141	1
		VI SEMESTER	DCN(KEC-063)	2	2	2	2	2							1
			SPM(KOE-068)	1.4	1.8	1.5	2	2						-	1
		œ	RDAP (KHU-701)	2	2	1.5		1.75							2
	rear	VII SEMESTER	MRE(KEC-074)	2	2	1.5	2	1.75				9			2
	4th	SEM	WMC(KEC-076)	1.8	2	2	2	2		- 41					2
3	(CE)	5	RER(KOE-074)	. 2	1.75	2	2	2						1	2
: -	B.Tech (ECE) 4th Year	ş	PME(KHU-802)	2	2	1.5		1.75	9			1		2	2
	3.Tek	VIII SEM.	CLOUD COMPUTING(KOE-081)	2	2	2	2	2			-		- 3		2
	-	₹	DSMM(KOE-094)	2	2	1.5		1.75							2
	***							80	200	22	-			200	2.0
	AVE	RAGE		2.0	2.1	1.9	2.1	2.1	1.2	1.3	1.3	2.0	2.0	1.3	

R.D. Engineering College Duhai, Ghaziahad

DEPAR' ACTIO	TMENT OF ELECTRONION TAKEN ON IDENTIFIE	CS AND COMMUNICATED GAP OF PROGRAM	FION ENGINEERING OUTCOMES (2022-2023)
S.N.	Gap Identified	Relevent PO	Action Taken
1	NO GAP		
2			
3			

Director R.D. Engineering College Duhai, Ghaziabad

B. Tech. (Electronics & Communication Engg.)

Semester III

Sr. No.	Course Code	Course Title		Perio	ods	E	valuati	on Schei	ne		nd lester	Total	Credit
			L	T	P	CT	TA	Total	P	TE	PE		
	KOE031-38/ KAS302	Engg. Science Course /Maths IV	3	1	0	30	20	50	S	100		150	4
1.	KAS301/ KVE301	Technical Communication /Universal Human values	2	1	0	30	20	50		100			-
2			3	0	0	100	20	30		100		150	3
2	KEC301	Electronic Devices	3	1	0	30	20	50	-	100	-	150	1
3.	KEC302	Digital System Design	3	1	0	30	20	5()	-	100			4
4.	KEC303	Network Analysis and Synthesis	3	0	0	30	20	50		100		150	3
5.	KEC351	Electronics Devices Lab	0	0	2				2.5				
7.	KEC352	Digital System Design Lab	0	0	2		-		25		25	50	1
3.	KEC353	Network Analysis and Synthesis lab	0	0	2				25 25		25 25	50	1
).	KEC354	Mini Project or Internship Assessment	0	0	2			50		•		50	1
0.	KNC301 /KNC302	Computer System Security /Python Programming	2	0	0	15	10	25		50			0
1.		MOOCs (Essential for Hons. Degree)											
		TOTAL internship (3-4 weeks) condu										950	22

semester.

Semester IV

Sr. No.	Course Code	Course Title		Perio	ds		valuat	ion Scl	heme	Control of the Control	nd ieste	Total	Credit
			L	T	P	C	TA	Tot al	PS	TE	P		
1.	KAS402/ KOE041-48	Maths-IV / Engg. Science Course	3	1	0	30	20	50		100	L	150	4
2.	KVE401/ KAS401	Universal Human Values/ Technical Communication	3	0	0	30	20	50		100		150	,
7	KEGGG		2	1	0					100		150	3
3.	KEC401	Communication Engineering	3	()	0	30	20	50	-	100	-	150	3
4.	KEC402	Analog Circuits	3	1	()	30	20	50		100	-	150	4
5.	KEC403	Signal System	3	1	0	30	20	50		100	-	-	
6.	KEC451	Communication Engineering	0	0	2			50	25	100	25	50	1
7.	KEC452	Analog Circuits Lab	0	0	2				3.5		2.5		
8.	KEC453	Signal System Lab	0	0	2				25	-	25	50	1
9.	KNC402/ KNC401	Python Programming/ Computer System Security	2	0	0	15	10	25	25	50	25	50	0
10.		MOOCs (Essential for Hons. Degree)											
		TOTAL										900	21

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING COURSE OUTCOME (2022-23)

B. Tech II (Semester III)

KAS 302: Maths-IV

CO	Course Outcomes
CO1	Remember the concept of partial differential equation and to solve partial differential equations.
CO2	Analyze the concept of partial differential equations to evaluate the problems concerned with partial differential equations.
CO3	Understand the concept of correlation, moments, skewness and kurtosis and curve fitting.
CO4	Remember the concept of probability to evaluate probability distributions.
CO5	Apply the concept of hypothesis testing and statistical quality control to create control charts.

		Mapp	oing of	Course	outco	mes v	vith Pr	ogran	outc	omes		
				ŀ	(AS 302	: Math	s-IV					
со				Pro	gram ou	tcomes	(PO)					
co	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	2	14	2	_	<u>.</u>	-	-	.5	-	1
CO2	3	3	2	2	_	-	_	-	2	-	-	1
CO3	2	2	2	2	-	-	-	-	<u>2</u>	-	1	1
CO4	2	2	•	2	2	-	-		-	-	1	1
CO5	2	2	-	-	2		1	-	-	-	2	1
Average	2.2	2.2	2	2	2	-	1	-	g -	-	1.33	1

Dr. Vishal Upmanu

Director
R.D. Engineering Colle
Duhai, Ghaziahad

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING COURSE OUTCOME (2022-23)

KVE 301: Universal Human Value

CO	Course Outcomes
CO1	Understand the significance of value inputs in a classroom, distinguish between values and skills, understand the need, basic guidelines, content of value education, explore the meaning of happiness and prosperity and do a correct appraisal of the current scenario in the society
CO2	Distinguish between the Self and the Body, understand the meaning of Harmony in the Self the Co-existence of Self and Body.
CO3	Understand the value of harmonious relationship based on trust, respect and other naturally acceptable feelings in human-human relationships and explore their role in ensuring a harmonious society.
CO4	Understand the harmony in nature and existence, and work out their mutually fulfilling participation in the nature.
CO5	Distinguish between ethical and unethical practices and start working out the strategy to actualize a harmonious environment wherever they work.

		Марр	oing of	Course	outco	omes v	vith Pr	ogran	outc	omes			
			KVE	301: Ur	niversal	Humar	ı Value						
	Program outcomes(PO)												
со	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	-	-	-	-	2	1	1	1	3	-	1	_	
CO2	-:	-	S=	-	-	1	-	1	3	-	-	-	
соз	-	-	<i>/-</i>	-	-	1	1	1	3	-	1	-	
CO4	2	-	-	-	-	1	-	1	3	-	1	-	
CO5	-	- 2	-	-	2	1	-	1	3	-	-	-	
Average	=		-	-	2	1	1	1	3	_	1	-	

Director
R.D. Engineering College
Duhai, Ghaziahad

Dr. Vishal Upmanu

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING COURSE OUTCOME (2022-23)

KEC301: Electronics Devices

co	Course Outcomes
CO1	Understand the principles of semiconductor Physics.
CO2	Understand and utilize the mathematical models of semiconductor junctions.
CO3	Understand carrier transport in semiconductors and design resistors.
CO4	Utilize the mathematical models of MOS transistors for circuits and systems.
CO5	Analyse and find application of special purpose diodes.

		Марі	oing of	Course	outco	omes v	with Pr	rogran	outc	omes			
				KEC	301 : El	ectroni	cs Devi	ces					
со	Program outcomes(PO)												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	1	1	1	1	1	-	-	-	-	-	- 8	3	
CO2	3	3	2	3	3	-	-	-	-	-	-	3	
соз	3	3	2	3	3	-	-	: -	-	-	_	3	
CO4	1	1	1	1	1	-	-	-	-	-	=	3	
CO5	3	3	3	3	3	-	=	-	= .0	-	-	3	
Average	2.2	2.2	1.8	2.2	2.2	-	s. =	_	-0	-	-	3	

Dr. Vishal Upmanu

Director R.D. Engineering Colle Duhai, Ghaziahad

Average

R.D. ENGINEERING COLLEGE, GHAZIABAD

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING COURSE OUTCOME (2022-23)

KEC302: Digital System Design

CO	C	ourse Ou	utcomes	5								
CO1	Design	and analy	ze comb	oination	al logic	circuits	S.					_
CO2	Design a Encode	and analy	ze modu	lar com	binatio	nal circ	uits wit	h MUX	/ DEM	IUX, De	coder &	
CO3	Design	& analyz	e synchr	onous se	eauentia	al logic	circuits					
CO4	Analyze	various	logic far	nilies.	1	8.4	on ourts	,				
CO5	Design .	ADC and	DAC ar	nd imple	ement in	n ampli	fier, inte	egrator	etc			
					02: Digi			sign				
со	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	3	-	-	-	-	-	-	3
CO2	3	3	3	3	3	-	-	-	-	-	-	3
03	3	3	3	3	3	2-	-	-	-	_	-	3
04	3	3	2	3	3	-	-	-	-	-	-	3
05	3	3	3	3	3	-	- 3	-	¥	-	•	3

3

2.8

3

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING COURSE OUTCOME (2022-23)

KEC303: Network Analysis & Synthesis

co	Course Outcomes
CO1	Understand basics electrical circuits with nodal and mesh analysis.
CO2	Appreciate electrical network theorems.
CO3	Apply Laplace transform for steady state and transient analysis.
CO4	Determine different network functions.
CO5	Appreciate the frequency domain techniques.

		Map	oing of	Course	outco	mes v	vith Pr	ogran	outc	omes			
				C303: 1									
со	Program outcomes(PO)												
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	3	2	3	3	-11	-	-	-	-	-	3	
CO2	3	3	2	3	3	-	-	-8	-		-	3	
CO3	3	3	2	3	3	2 -	-	_	-	-	ĕ	3	
CO4	3	3	2	3	3	E=	-	-	-	-	-	3	
CO5	3	3	2	3	3	-	_	-	_	-	-	3	
Average	3	3	2	3	3	-	=0		-	-	-	3	

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING COURSE OUTCOME (2022-23)

KEC351: Electronics Devices Lab

CO	Course Outcomes
CO1	Understand working of basic electronics lab equipment.
CO2	Understand working of PN junction diode and its applications.
CO3	Understand characteristics of Zener diode.
CO4	Design a voltage regulator using Zener diode.
CO5	Understand working of BJT, FET, MOSFET and apply the concept in designing of amplifiers

		Map	ping of	Course	outco	mes v	vith Pr	ogran	outc	omes				
				KEC35	51: Elec	tronics	Device	Lab						
со		Program outcomes(PO)												
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	3	3	2	3	3	-	_	-	4	-	-	3		
CO2	3	3	2	3	3	-		-	-	-	-	3		
CO3	3	3	2	3	3	-	-	-	-	-	-	3		
CO4	3	3	3	3	3	-	-	-	-	-	-	3		
CO5	3	3	2	3	3	-		-	-	-	-	3		
Average	3	3	2.2	3	3	-	-	-	-		-	3		

Director R.D. Engineering College Duhai, Ghaziabad Dr. Vishal Upmanu

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING COURSE OUTCOME (2022-23)

KEC352: Digital System Design Lab

CO	Course Outcomes
CO1	Design and analyze combinational logic circuits.
CO2	Design & analyze modular combinational circuits with MUX/DEMUX, decoder.
CO3	Design & analyze synchronous sequential logic circuits.
CO4	Design & build mini project using digital ICs.

		Марр	oing of	Course	outco	mes v	vith Pr	ogran	outc	omes				
				KEC352	: Digita	l Syster	n Desig	n Lab						
со		Program outcomes(PO)												
co	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	3	3	3	3	3	-	-	-	-	-	×-	3		
CO2	3	3	3	3	3	-	-	-	-		8-	3		
CO3	3	3	3	3	3	-	-	-	-	-	-	3		
CO4	3	3	3	3	3	-	_	-	= :	-	-	3		
Average	3	3	3	3	3	_	- 0	_	-	-	-	3		

Director R.D. Engineering College Duhai, Ghaziabad

Dr. Vishal Upmanu

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING COURSE OUTCOME (2022-23)

KEC353: Network Analysis & Synthesis Lab

CO	Course Outcomes
CO1	Understand basics of electrical circuits with nodal and mesh analysis.
CO2	Appreciate electrical network theorems.
CO3	Analyse RLC circuits.
CO4	Determine the stability of an electrical circuit.
CO5	Design network filters.

		Map	oing of	Course	outco	mes v	vith Pr	ogran	outc	omes			
			KEC	353: Ne	twork /	Analysis	& Synt	thesis L	ab				
со	Program outcomes(PO)												
co	PO1	PO2	РОЗ	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	3	2	3	3	-	-		-	-		3	
CO2	3	3	2	3	3	5 2	-		-	-		3	
CO3	3	3	2	3	3	- ir	-	-:	-	-	_	3	
CO4	3	3	3	3	3	-	-		-	-	-	3	
CO5	3	3	2	3	3	-	-	-	-		-	3	
Average	3	3	2.2	3	3		_	9 .	-		2=	3	

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

COURSE OUTCOME (2022-2023)

KEC 354: Mini Project

CO	Course Outcomes
CO1	Criticize and experiment to arrive at solutions for real world mechanical engineering problems.
CO2	Analyses and evaluate to obtain solution for problems in mechanical engineering systems.
CO3	Demonstrate effective project execution and control techniques that result in successful projects.
CO4	Conduct project closure activities and obtain formal project acceptance.

		Map	ping of	Cours	e outco	mes wi	th Pro	gram o	utcom	es				
				KE	C 354:	Mini P	roject							
		Program outcomes (PO)												
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	2	2	1	-	2	1	1	-	-	-	-	-		
CO2	1	3	3	3	-	V=	-	-	-	-	-	-		
CO3	2	1	-	1.	-1	1	-	-	1	-	1	1		
CO4	3	2	-	2	2	1	-	-	1	1	2	2		
Average	2	2	2	2	2	1	1	-	1	1	1.5	1.5		

Director
R.D. Engineering College
Duhai, Ghaziahad

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING COURSE OUTCOME (2022-23)

B. Tech II (Semester IV)

KOE 044: Sensor and Instrumentation

CO	Course Outcomes
CO1	Apply the use of sensors for measurement of displacement, force and pressure.
CO2	Employ commonly used sensors in industry for measurement of temperature, position, accelerometer, vibration sensor, flow and level.
CO3	Demonstrate the use of virtual instrumentation in automation industries.
CO4	Identify and use data acquisition methods.
CO5	Comprehend intelligent instrumentation in industrial automation.

	Mapping of Course outcomes with Program outcomes KOE 044: Sensor and Instrumentation													
		Program outcomes(PO)												
со	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	2	2	2	-	2	-	100	-	-	.=.	.==	1		
CO2	2	3	2	2	8=			=:	-	-	-	-		
соз	1	2	-	2	-	-	-	-	-			1		
CO4	2	1	-	2	2	1-1	-	-	-	-	-	1		
CO5	1	2	-	-	2	-	2=	-	-	-	-	-		
Average	1.6	2	2	2	2	-	-	(■)	5		=	1		

Director
R.D. Engineering College
Duhai, Ghaziabad

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING COURSE OUTCOME (2022-23)

KAS 401: Technical Communication

CO	Course Outcomes
CO1	Students will be enabled to understand the nature and objective of Technical Communication relevant for the work place as Engineers.
CO2	Students will utilize the technical writing for the purposes of Technical Communication and its exposure in various dimensions.
CO3	Students would imbibe inputs by presentation skills to enhance confidence in face of diverse audience.
CO4	Technical communication skills will create a vast know-how of the application of learning to promote their technical competence.
CO5	It would enable them to evaluate their efficacy as fluent & efficient communicators By learning the voice-dynamics.

		Марр	ing of	Course	outco	mes v	vith Pr	ogram	outc	omes			
	KAS 401: Technical Communication												
	Program outcomes(PO)												
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	1	2	3	1	2	1	2	2	-	2	-	2	
CO2	1	2	3	1	2	2	2	1	_	2		2	
соз	1	1	2	1	1	2	2	2	=	2	•	3	
CO4	2	1	3	2	1	1	2	1	-	2	-	3	
CO5	1	1	2	1	2	1	1	2	-	2	•	2	
Average	1.2	1.4	2.6	1.2	1.6	1.4	1.8	1.6	-	2	-	2.4	

Director R.D. Engineering College Duhai, Ghaziabad

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING COURSE OUTCOME (2022-23)

KEC401: Communication Engineering

CO	Course Outcomes
CO1	Analyze and compare different analog modulation schemes for their efficiency and bandwidth.
CO2	Analyze the behavior of a communication system in presence of noise.
СОЗ	Investigate pulsed modulation system and analyze their system performance.
CO4	Investigate various multiplexing techniques.
CO5	Analyze different digital modulation schemes and compute the bit error performance

		Mapp	oing of	Course	outco	omes v	vith Pr	ogran	outc	omes			
			KE	C401: 0	Commi	ınicatio	on Engi	neerin	g				
со	Program outcomes(PO)												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	2	2	2	-	2	12	_	14	-	-	-	1	
CO2	2	3	2	2	-	-		-	-	=			
CO3	1	2	-	2		-	÷.	-	-	-	-	1	
CO4	2	1		2	2	۰.	-	-	=>	\; -	100	1	
CO5	1	2	-	-	2	-	-	-	-	-	-	-	
Average	1.6	2	2	2	2	-	8=	-	-	-	-	1	

Director R.D. Engineering College Duhai, Ghaziabad Dr. Vishai Upmanu

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING COURSE OUTCOME (2022-23)

KEC402: Analog Circuits

CO	Course Outcomes
CO1	Understand the characteristics of diodes and transistors.
CO2	Design and analyze various rectifier and amplifier circuits.
CO3	Design sinusoidal and non-sinusoidal oscillators.
CO4	Understand the functioning of OP-AMP and design OP-AMP based circuits.
CO5	Design LPF, HPF, BPF, BSF.

	KEC402: Analog Circuits												
со	Program outcomes(PO)												
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	3	2	3	3	-	-	-	-	-	-	3	
CO2	3	3	2	3	3	-	-	-	-	_	= 8	3	
соз	1	1	1	1	1	-:	-		-	-	_	3	
CO4	1	1	1	1	1	. -	_	-		_	-	3	
CO5	1	1	1	1	1	-	-	82	-	-	=	3	
Average	1.8	1.8	1.4	1.8	1.8	-	-	-	_	8-	-	3	
,					R.D	D). Engir	irector leering Ghazia	Colleg	е	Dr. Air	shall U	pmahi	

Director R.D. Engineering College Duhai, Ghaziabad

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING COURSE OUTCOME (2022-23)

KEC403: Signal System

CO	Course Outcomes
CO1	Analyze different types of signals.
CO2	Analyze linear shift-invariant (LSI) systems.
CO3	Represent continuous and discrete systems in time and frequency domain using Fourier Series and transform.
CO4	Analyze discrete time signals in z-domain.
CO5	Study sampling and reconstruction of a signal.

		Mapp	oing of	Course	outco	mes v	vith Pr	ogran	outc	omes				
				KE	C403:	Signal	System)						
		Program outcomes(PO)												
со	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	3	3	2	3	3	-0	-		-	-	÷	2		
CO2	3	3	2	3	3	: -	-	-	-	-8	n=	2		
соз	1	3	2	1	1	-	-	1	-	-	-	2		
CO4	1	3	2	1	1	-	-	15	-	-	-	2		
CO5	1	3	2	1	1	-		-	-	7.	-	2		
Average	1.8	3	2	1.8	1.8	·	-	-	-	-	-	2		

Director
R.D. Engineering College
Duhai, Ghaziahad

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING COURSE OUTCOME (2022-23)

KEC451: Communication Engineering Lab

CO	Course Outcomes							
CO1	Analyze and compare different analog modulation schemes for their modulation factor and power.							
CO2	Study pulse amplitude modulation.							
CO3	Analyze different digital modulation schemes and can compute the bit error performance.							
CO4	Study and simulate the Phase shift keying.							
CO5	Design a front end BPSK modulator and demodulator.							

	Mapping of Course outcomes with Program outcomes KEC451: Communication Engineering Lab													
со	Program outcomes(PO)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	2	2	-	2	2	-	-	-		-	-	1		
CO2	2	1	2	2	-	:2	-	p <u>e</u>	_	4	-	1		
CO3	1	1	3	2	-	121	_	-	-	-	Ξ	1		
CO4	2	2	V ₂	2	1	-	-	-	9	-	-	1		
CO5	2	2	-	2	2	-	-	-	-		-	1		
Average	1.8	1.6	1.66	2	1.66	-	=	-	-	-		1		

Director
R.D. Engineering College
Duhai, Ghaziahad

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING COURSE OUTCOME (2022-23)

KEC452: Analog Circuit Lab

CO	Course Outcomes
CO1	Understand the characteristics of transistors
CO2	Design and analyze various configurations of amplifier circuits
CO3	Design sinusoidal and non-sinusoidal oscillators
CO4	Understand the functioning of OP-AMP and design OP-AMP based circuits.
CO5	Design ADC and DAC.

		Map	oing of	Course	outco	omes v	vith Pr	ogran	outc	omes				
			KEC	452 :	Analo	og Circ	uit La	b						
со	Program outcomes(PO)													
co	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	2	1	2	2	2	-	-	7=	-	-	-	1		
CO2	2	2	2	2	-	-	-	-	-		=			
CO3	1	2	2	2	-	-	120	-	ŝ	-	-	1		
CO4	2	2	2	2	1	-	-	-	-	-	70	1		
CO5	2	1	2	2	2	-	-	-	-	127	-	2		
Average	1.8	1.6	2	2	2	-	_	-	_		*:	1		

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING COURSE OUTCOME (2022-23)

KEC453: Signal System Lab

co	Course Outcomes	
CO1	Understand the basics operation of MATLAB.	
CO2	Analysis the time domain and frequency domain signals.	
CO3	Implement the concept of Fourier series and Fourier transforms.	
CO4	Find the stability of system using pole-zero diagrams and bode diagram	
CO5	Design frequency response of the system.	

		Map	oing of	Course	outco	mes v	vith Pr	ogran	outc	omes					
				KEC4	53: Sig	gnal Sy	/stem	Lab							
со		Program outcomes(PO)													
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12			
CO1	1	2	2	2	2	-	ev	-	-	₹		2			
CO2	2	2	2	2	-	-	_	-	-	-	-	2			
CO3	2	1	2	2	-	-	-	-	<u>\$</u> ,	-	-	2			
CO4	1	2	2	2	2	-	22)	<u>.</u>	-	-	2			
CO5	2	1	2	2	2		(<u>@</u>	•	=	-	•	2			
Average	1.6	1.6	2	2	2		-		.=	-	•	2			

ELECTRONICS AND COMMUNICATION ENGINEERING

B.Tech. V Semester

Electronics and Communication Engineering

S. No.	Course Code	Course Title		Perio				ion Sche		- 0	nd ester	Total	Credi
-	Week and the second		L	T	P	CT	TA	Total	PS	TE	PE		
1	KEC-501	Integrated Circuits	3	1	0	30	20	50		100	1	150	+
2	KEC-502	Microprocessor & Microcontroller	3	1	0	30	20	50		100		150	4
3	KEC-503	Digital Signal Processing	3	1	0	30	20	50		100		150	4
4	KEC-051-054	Department Elective-I	3	0	0	30	20	50		100		150	3
5	KEC-055-058	Department Elective-II	3	0	0	30	20	50		100		150	3
6	KEC-551	Integrated Circuits Lab	0	0	2			-	2.5	979808			
7	KEC-552	Microprocessor &	0	0	2			- A	25		25	50	1
		Microcontroller Lab	0	0	2			, ()	25		25	50	1
8	KEC-553	Digital Signal Processing Lab	0	0	2				25		25	50	1
9	KEC-554	Mini Project/Internship **	0	0	2				50			50	1
10	KNC501/KNC502	Constitution of India, Law and Engineering / Indian Tradition, Culture and Society	2	0	0	15	10	25		50			NC
11		MOOCs (Essential for Hons. Degree)											
*The	Min	Total ernship (4weeks) conducted durin										950	22

Semester. Semester and will be assessed during Vth

Course Code	Course Title	
	Department Elective-I	
KEC-051	Computer Architecture and Organization	
KEC-052	Industrial Electronics	
KEC-053	VLSI Technology	
KEC-054	Advance Digital Design using Verilog	War
	Department Elective-II	Director
KEC-055	Electronics Switching	R.D. Engineering College Duhai, Ghaziabad
KEC-056	Advance Semiconductor Device	Dunai, Ghaziabad
KEC-057	Electronics Measurement & Instrumentation	on.
KEC-058	Optical Communication	,

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING COURSE OUTCOME (2022-23)

B. Tech III (Semester V)

KEC 501: Integrated Circuits

CO	Course Outcomes
CO1	Explain complete internal analysis of Op-Amp 741-IC.
CO2	Examine and design Op-Amp based circuits and basic components of ICs such as various types of filter.
CO3	Implement the concept of Op-Amp to design Op-Amp based non-linear applications and wave-shaping circuits.
CO4	Analyse and design basic digital IC circuits using CMOS technology.
CO5	Describe the functioning of application specific ICs such as 555 timer ,VCO IC 566 and PLL.

		Марр	oing of	Course	outco	mes v	vith Pr	ogran	outc	omes				
	KEC 501: Integrated Circuits													
со	Program outcomes(PO)													
co	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	1	1	1	1	1	-	-	-	-	-	-	3		
CO2	3	3	2	3	3	-	=,,	-	-		-	3		
CO3	3	3	2	3	3	-	-	-	=:	-	-	3		
CO4	3	3	3	3	3	-	к=	-		-	-	3		
CO5	3	3	2	3	3	-	2 -	-	-:	-	-	3		
Average	2.6	2.6	2	2.6	2.6	-	1:=	- 1	v. =	-	-	3		

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING COURSE OUTCOME (2022-23)

KEC 502: Microprocessor & Microcontroller

CO	Course Outcomes
CO1	Demonstrate the basic architecture of 8085.
CO2	Illustrate the programming model of microprocessors & write program using 8085 microprocessor.
CO3	Demonstrate the basics of 8086 Microprocessor and interface different external Peripheral Devices like timer, USART etc. with Microprocessor (8085/8086).
CO4	Compare Microprocessors & Microcontrollers, and comprehend the architecture of 8051 microcontroller.
CO5	Illustrate the programming model of 8051 and implement them to design projects on real time problems.

		Map	oing of	Course	outco	mes v	vith Pr	ogran	outc	omes				
	KEC 502: Microprocessor & Microcontroller													
со	Program outcomes(PO)													
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	3	3	2	3	3	-	-	-		-	-8	3		
CO2	3	3	2	3	3	-	-	= 0	-	-	- ×	3		
соз	1	1	1	1	1		-	-	-	-1	-	3		
CO4	1	1	1	1	1	-	-	-	-		K -	3		
CO5	1	1	1	1	1	-	-		-	-	((=	3		
Average	1.8	1.8	1.4	1.8	1.8	_	-	-	-	-	-	3		

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING COURSE OUTCOME (2022-23)

KEC503: Digital Signal Processing

CO	Course Outcomes
CO1	Design and describe different types of realizations of digital systems (IIR and FIR) and their utilities.
CO2	Select design parameters of analog IIR digital filters (Butterworth and Chebyshevfilters) and implement various methods such as impulse invariant transformation and bilinear transformation of conversion of analog to digital filters
CO3	Design FIR filter using various types of window functions.
CO4	Define the principle of discrete Fourier transform & its various properties and concept of circular and linear convolution. Also, students will be able to define and implement FFT i.e. a fast computation method of DFT.
CO5	Define the concept of decimation and interpolation. Also, they will be able to Implement it In various practical applications.

		Марр	oing of	Course	outco	omes v	vith Pr	ogran	outc	omes				
			KEC	503 : เ	Digital	Signa	l Proc	essin	3					
со	Program outcomes(PO)													
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	3	3	3	3	3	-	-	-	200		-	2		
CO2	3	3	3	3	3	-	-	-	-	-	-	2		
CO3	3	3	3	3	3	·	-	-	-	_		2		
CO4	1	1	1	1	1	-0	-		-	-	# 3	2		
CO5	1	1	1	1	1	-0	-	-0	-	-	* 0	2		
Average	2.2	2.2	2.2	2.2	2.2	-	_	-	-	-	2 - 0	2		

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING COURSE OUTCOME (2022-23)

KEC 053: VLSI Technology

CO	Co	urse Ou	tcomes									
CO1	Interpret	the basic	s of crys	stal grov	vth, wa	fer nren	aration	and wa	fer cles	nina		
CO2	Evaluate	the proc	ess of E	oitaxy a	nd oxid	ation.	aration	ana wa	ici cica	uning.		
СОЗ	Differen	tiate the	lithograp	hy, etch	ning and	denosi	ition pro	ocess				
CO4	Analyze	the proce	ess of di	fusion a	and ion	implan	tation	30033.				
CO5	Express	the basic	process	involve	d in me	tallizati	on and	nackao	ino			
			KE	C 053	: VLS	l Tech	nolog	У				
со				Pro	gram ou	itcomes	(PO)					
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	3	_	-	-	-	-	-	3
CO2	3	3	3	3	3		-	-	-	-	-	3
CO3	3	3	3	3	3	-	-	-	-	-	-	3
04	1	1	1	1	1	-	-	-	₹8	-	-	3
05	1	1	1	1	1		-	-	8 8	-	-	3
								1				

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING COURSE OUTCOME (2022-23)

KEC 056: Advanced Semiconductor Device

CO	Course Outcomes
CO1	Explain the behavior of BJT and MOSFET in DC biasing and as CE amplifier circuit.
CO2	Describe the Tunnel diode and IMPATT diode.
CO3	Explain the basics of Light-Emitting Diode (LED) and evaluate the performance of
	Photoconductor and photodiode.
CO4	Distinguish the performance of Photoconductor, photodiode, Phototransistor.
CO5	Analyze the functioning of Metal-Semiconductor-Metal Photodetector.

		Марр	ing of	Course	outco	mes v	vith Pr	ogram	outco	omes		
			KEC 05	6: A	dvanc	e Sem	icond	uctor	Devic	e		
				Prog	gram ou	tcomes	(PO)				-	
со	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	2	2	-	2		-	-	-	-	-	1
CO2	2	1	2	2				8	-	-	27	=
CO3	2	2	-	2	-		-	-	_	-	-	1
CO4	1	2	-	2	2		-	-	-	-		1
CO5	2	2	-	-	2			-	-	-	٠	-
Average	1.6	1.8	2	2	2		-	-	*	112	-	1

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING COURSE OUTCOME (2022-23)

KEC 551: Integrated Circuits Lab

CO	Course Outcomes
CO1	Design different non-linear applications of operational amplifiers such as log, antilog amplifiers and voltage comparators.
CO2	Explain and design different linear applications of operational amplifiers such as filters.
CO3	Demonstrate the function of waveforms generator using op-Amp.
CO4	Construct multivibrator and oscillator circuits using IC555 and IC566 and perform measurements of frequency and time.
CO5	Design and practically demonstrate the applications based on IC555.

		Map	oing of	Course	outco	omes v	vith Pr	ogran	outc	omes			
			KEC	551: I	ntegr	ated C	ircuit	s Lab					
со	Program outcomes(PO) PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO1												
CO	PO1	PO2	РОЗ	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	1	2	2	-	2	-	-	-	-	-	-	2	
CO2	1	2	1	2	2	-	-	-	-	-	-	2	
CO3	2	1	-	2	-	-	-	-	_	-	-	1	
CO4	2	2	-	2	2	-	-	-	ā		-	2	
CO5	1	2	N=	-	2	-	-	-	-	-	-	2	
Average	1.4	1.8	1.5	2	2	-		-	-	-	-	1.8	

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING COURSE OUTCOME (2022-23)

KEC 552: Microprocessor & Microcontroller Lab

CO	Course Outcomes
CO1	Use techniques, skills, modern engineering tools, instrumentation and software/hardware appropriately to list and demonstrate arithmetic and logical operations on 8 bit data using microprocessor 8085.
CO2	Examine 8085 & 8086 microprocessor and its interfacing with peripheral devices.
CO3	State various conversion techniques using 8085 & 8086 and generate waveforms using 8085.
CO4	Implement programming concept of 8051 Microcontroller.
CO5	Design concepts to Interface peripheral devices with Microcontroller so as to design Microcontroller based projects.

		Map	oing of	Course	outco	mes v	vith Pr	ogran	outc	omes		
		ŀ	KEC 55 2	2: Mic	ropro	cessoi	· & Mi	croco	ntroll	er Lab		
со	Program outcomes(PO)											
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	2		2	-	-	-	1.5	-		2
CO2	2	2	2	2	-	-	-	5 7	:=	-	-	2
CO3	2	2		2	-	5 .	-		-		5 /	2
CO4	2	2	-	2	2	-	-		-	-		2
CO5	2	2	-	-	2	-	-	- 2	-	-	-	2
Average	2	2	2	2	2	-	-	-		,=a	-	2

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING COURSE OUTCOME (2022-23)

KEC 553: Digital Signal Processing Lab

CO	Course Outcomes
CO1	Create and visualize various discrete/digital signals using MATLAB/Scilab.
CO2	Implement and test the basic operations of Signal processing.
03	Examine and analyse the spectral parameters of window functions.
CO4	Design IIR and FIR filters for band pass, band stop, low pass and high pass filters.
CO5	Design the signal processing algorithms using MATLAB/SCI lab.

		Mapp	oing of	Course	outco	omes v	vith Pr	ogran	outc	omes			
			KEC	553: [Digital	Signa	l Proc	essin	g Lab				
со	Program outcomes(PO)												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	2	2	8=	2		-	-	-	-	-	2	
CO2	1	1	2	2	-	-	9	ų.	-	-	8=	1	
CO3	2	2	2	2	8	-	Ē.	.=		-		2	
CO4	2	2	=	2	2	-	-0		-	-	.=	2	
CO5	2	3	7	(5)	2	-	=31	.=	-	1.55	:=	3	
Average	2	2	2	2	2	-	-0	-		\(\sigma_{\sigma}\)	-	2	

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING COURSE OUTCOME (2022-23)

KEC 554: Mini Project/Internship

CO	Course Outcomes
CO1	Identify an engineering problem, devise a means of solving and exhibit the ability to execute the solution
CO2	Demonstrate knowledge of professional and ethical responsibilities.
CO3	Show the understanding of impact of engineering solutions on the society and also will be aware of contemporary issues.
CO4	Communicate effectively in both verbal and written form.
CO5	Develop confidence for self-education and ability for lifelong learning

		Mapp	oing of	Course	outco	mes v	vith Pr	ogran	outc	omes			
			KEC	554: N	Mini P	roject	/Inter	rnship					
со	Program outcomes(PO)												
co	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	2	1	2	-	2	1	1		-	8	. =	-	
CO2	2	2	2	2	_		EX.	-	-	2	:5	2	
CO3	2	2	#	2	8	1	5.0		1	2	2	2	
CO4	1	2	ā	2	2	1	= .	-	- 2.	-	1	2	
CO5	2	2	.=	-	2		-	-	1	8. 8 5	:=	-	
Average	1.8	1.8	2	2	2	1	1	-	1	2	1.5	2	

ELECTRONICS AND COMMUNICATION ENGINEERING

B.Tech. VI Semester

Electronics and Communication Engineering

S. No.	Course Code	Course Title	Pe	riod				Schem		End Semes	ster	Total	Credits
1	MEG (a)		L	T	P	CT	TA	Total	PS	TE	PE		
1	KEC-601	Digital Communication	3	1	0	30	20	50		100		150	4
2	KEC-602	Control System	3	1	0	30	20	50	-	100	+		-
3	KEC-603	Antenna and Wave Propagation	3	I	0	30	20	50	-	100		150	4
4		Department Elective-III	3	0	0	30	20	50		100		150	3
5		Open Elective-I	3	0	0	30	20	50		100	+	1.00	107
6	KEC-651	Digital Communication Lab	0	0	2	50	20	30	25	100	25	150	3
7	KEC-652	Control System Lab	0	0	2							50	
8	KEC-653	Elective Lab	0	0	2				25		25	50	1
9	KNC601/ KNC602	Constitution of India, Law and Engineering / Indian Tradition, Culture and Society	2	0	0	15	10	25	25	50	25	50	l NC
10		MOOCs (Essential for Hons. Degree)											
		Total										900	21

Course Code	Course Title
	Department Elective-III
KEC-061	Microcontroller & Embedded System Design
KEC-062	Satellite Communication
KEC-063	Data Communication Networks
KEC-064	Analog Signal Processing
KEC-065	Random Variables & Stochastic Process
Course Code	Elective Lab
KEC-653A	Measurement & Instrumentation Lab
KEC-653B	Cad for Electronics Lab

Microcontroller & Embedded System Design Lab

KEC-653C

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING COURSE OUTCOME (2022-23)

B. Tech III (Semester VI)

KEC 601: Digital Communication

CO	Course Outcomes	
CO1	To formulate basic statistics involved in communication theory.	
CO2	To demonstrate the concepts involved in digital communication.	
CO3	To explain the concepts of digital modulation schemes.	
CO4	To analyze the performance of digital communication systems.	
CO5	To apply the concept of information theory in digital systems.	

Mapping of Course outcomes with Program outcomes KEC 601: Digital Communication Program outcomes(PO) CO PO1 PO2 PO₃ PO4 PO5 PO6 **PO7 PO8 PO9** PO10 PO11 PO12 CO1 3 3 2 3 3 3 CO2 3 3 3 3 3 3 **CO3** 3 3 2 3 3 3 **CO4** 3 2 3 3 3 3 **CO5** 3 3 3 3 3 3 Average 3 3 2.4 3 3 3

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING COURSE OUTCOME (2022-23)

KEC 602: Control System

CO	Course Outcomes
CO1	Describe the basics of control systems along with different types of feedback and its effect. Additionally they will also be able to explain the techniques such as block diagrams reduction, signal flow graph and modelling of various physical systems along with modeling of DC servomotor.
CO2	Explain the concept of state variables for the representation of LTI system.
CO3	Interpret the time domain response analysis for various types of inputs along with the time domain specifications.
CO4	Distinguish the concepts of absolute and relative stability for continuous data systems along with different methods.
CO5	Interpret the concept of frequency domain response analysis and their specifications.

		Марр	oing of	Course	outco	mes v	vith Pr	ogran	outc	omes			
			KEC	602 :	Contr	ol Sys	tem						
со	Program outcomes(PO)												
CO	PO1	PO2	РОЗ	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	1	2	2	_	2	-	-	21	-	-	-	2	
CO2	1	2	1	2	-	-	_	-	-	-	8)	2	
CO3	2	1	-	2	-	. .	-	8.	-		<u>.</u>	1	
CO4	2	2		2	2	9.	=	<u>Ş</u> .	=	-	8,	2	
CO5	1	2	-	-	2	+	-	- 8	-	-	5	2	
Average	1.4	1.8	1.5	2	2	-	-	-	-	-	-	1.8	

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING COURSE OUTCOME (2022-23)

KEC 603: Antenna and Wave Propagation

СО	Course Outcomes
CO1	Identify different coordinate systems and their applications in electromagnetic field theory to establish a relation between any two systems using the vector calculus.
CO2	
CO3	
CO4	Demonstrate the knowledge of antenna fundamentals and radiation mechanism of the antenna.
CO5	Analyze and design different types of basic antennas.

		Mapp	oing of	Course	outco	mes v	vith Pr	ogran	outc	omes		
			KEC 6	603: A	ntenn	a and	Wave	Prop	agatio	on		
со				Pro	gram ou	tcomes	(PO)					
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	2	-	2	-	_	2	-	-	e	1
CO2	2	2	2	2	-		-	2	-	-	÷	-
CO3	1	2	-	2	-	-	-	-	-	-	-	1
CO4	2	2	£.	2	2	-	-	-	-	-		1
CO5	2	2	<u>s</u> .	-	2	E		U.S.	-	-	\$.	,3,
Average	1.8	2	2	2	2	-	-	-	-	-	(I.E.	1

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING COURSE OUTCOME (2022-23)

KEC 063: Data Communication Networks

CO	Course Outcomes
CO1	Identify the issues and challenges in the architecture of a network.
CO2	Analyze the services and features of various protocol layers in data layer.
CO3	Demonstrate the knowledge of multiple access to design a access technique for a particular application.
CO4	Realize protocols at different layers of a network hierarchy.
CO5	Recognize security issues in a network and various application of application layer.

		Map	ping of	Course	outco	omes v	vith Pr	ogran	outc	omes		
			KEC ()63 : D	ata C	ommu	nicati	on Ne	twor	ks		
со				Pro	gram ou	tcomes	(PO)					
CO	PO1	PO2	РОЗ	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	1	2	-	2	-	-	-	=0	-	_	1
CO2	2	2	2	2	_	-	20 20 20	-	-	-		-
CO3	2	2	-	2	-	-	14	-	-	-	-	1
CO4	2	2	-	2	2	-	-	-	-	-	-	1
CO5	1	3	-	=),	2	-	-		e -	-	-	-
Average	2	2	2	2	2	_	_	-	_	_	-	1

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING COURSE OUTCOME (2022-23)

KOE 068: Software Project Management

CO	Course Outcomes
CO1	Identify project planning objectives, along with various cost/effort estimation models.
CO2	Organize & schedule project activities to compute critical path for risk analysis.
CO3	Monitor and control project activities.
CO4	Formulate testing objectives and test plan to ensure good software quality under SEI-CMM.
CO5	Configure changes and manage risks using project management tools.

		Map	oing of	Course	outco	mes v	vith Pr	ogram	outc	omes		
		K	OE 068	: Softv	ware l	Projec	t Man	agem	ent			
со				Pro	gram ou	tcomes	(PO)					
co	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	2	2	-	2	-	-	-	-	-	_	1
CO2	1	2	1	2	-	-	-	-	-	_	-	2
CO3	2	1	-	2	-	-	-	-	-	-	-	1
CO4	2	2	-	2	2	-			-	-	-	1
CO5	1	2	-	-	2	-	-	-	-	:=	-	-
Average	1.4	1.8	1.5	2	2	-	-	-	-		-	1

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING COURSE OUTCOME (2022-23)

KEC-651 Digital Communication Lab

CO		urse Ou										
CO1	To formu	ılate bas	sic conce	epts of	pulse s	haping	in dig	ital con	nmuni	cation.		
CO2	To identi	fy differ	ent line	coding	techni	iques a	nd der	nonstra	ate the	conce	nts.	
CO3	To design	n equipr	nents re	lated t	o digita	al modu	ulation	and de	emodu	lation	chamas	
CO4	To design equipments related to digital modulation and demodulation schemes. To analyze the performance of various digital communication systems and evaluate the key parameters.											
CO5	To conce commun	ptualize		etectio	n & coi	rrectio	n using	differe	ent cod	ding sch	emes in	digital
		Марр	ing of (Course	outco	mes v	vith Pr	ogram	outc	omes		
			KEC-6	51 Di	gital C	omm	unicat	tion La	ab			
со				Pro	gram o	utcomes	s(PO)					
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2	3	3	-	-	-	-			2
CO2	3	3	2	3	3	-	-	_		-	-	2
CO3	3	3	2	3	3	-	-	-	-)-	-	2
CO4	3	3	3	3	3	-	-	-	-	· -	-	3
CO5	3	3	3	3	3	-		-	-	-	-	3
Average	3	3	2.4	3	3	-	_	_	-	_	_	2.4

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING COURSE OUTCOME (2022-23)

KEC 652: Control System Lab

CO	Course Outcomes
CO1	Classify different tools in MATLAB along with the basic matrix operations used in MATLAB.
CO2	Evaluate the poles and zeros on s-plane along with transfer function of a given system.
CO3	Construct state space model of a linear continuous system.
CO4	Evaluate the various specifications of time domain response of a given system.
CO5	Appraise the steady state error of a given transfer function.

		Map	ping of	Course	outco	omes v	vith Pr	ogran	outc	omes			
			KEC 6	552: C	ontrol	Syste	m Lak)					
со	Program outcomes(PO)												
co	PO1	PO2	РОЗ	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	3	2	3	3		-	-	= _A	-	-	2	
CO2	3	3	2	3	3	-	ĵ e	-	.=	-	-	2	
соз	3	3	2	3	3		-	-	-	-	-	2	
CO4	3	3	3	3	3		-	-	-	-	-	3	
CO5	3	3	3	3	3	≡ 8	-		-	-	-0	3	
Average	3	3	2.4	3	3	S(-).	-	- 9	-	-	(r = 1)	2.4	

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING COURSE OUTCOME (2022-23)

KEC 653B: Cad for Electronics Lab

CO	Course Outcomes
CO1	Design and analyze the performance of different type of inverters.
CO2	Design and analyze the performance of the basic logic gates using CMOS inverter circuit.
CO3	Design and analyze the performance of the memory based digital circuits using CMOS inverter circuit.
CO4	Analyze the performance of the different configuration of MOS amplifier circuits.

		Mapp	oing of	Course	outco	mes v	vith Pr	ogram	outc	omes		
			KEC 6	53B :	Cad fo	r Elec	tronic	s Lab				
CO				Pro	gram ou	tcomes	(PO)					
со	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	2	-	2	-	_	-	-	-	je.	2
CO2	2	2	2	2	-	-	=	_	-	-	-	2
CO3	2	2	-	2	-	-	-	-	-	-	-	2
CO4	2	2	-	2	2	-	-	-	-	-		2
Average	2	2	2	2	2	-	.	-	=	-	-	2

ELECTRONICS AND COMMUNICATION ENGINEERING

B.Tech. VII Semester

Electronics and Communication Engineering

S. No.	Course Code	Course Title		erio				ion Sche		E	nd ester	Total	Credits
			L	T	P	CT	TA	A Total PS TE PE		1	1		
1.	KHU701/KHU702	HSMC -1 [#] /HSMC-2 [#]	3	0	0	30	20	50		100	1 L	150	3
2.	KEC-071-074	Department Elective -IV	3	0	0	30	20	50		100		150	3
3.	KEC-075-076	Department Elective -V	3	0	0	30	20	50		100		150	3
4.		Open Elective-II	3	0	0	30	20	50		100		150	3
5.	KEC-751X	Lab for Department Elective -	0	0	2				2.5	7,3,3,	12000		3
6.	KEC-752	Mini Project or Internship Assessment**	0	0	2				50		25	50	1
7.	KEC-753	Project I	0	0	8				150			150	4
		MOOCs (Essential for Hons. Degree)										130	7
		Total										850	18

Course Code	Course Title
	Department Elective-IV
KEC-071	Digital Image Processing
KEC-072	VLSI Design
KEC-073	Optical Network
KEC-074	Microwave & Radar Engineering
	Department Elective-V
KEC-075	Information Theory & Coding
KEC-076	Wireless & Mobile Communication
KEC-077	Micro & Smart Systems
KEC-078	Speech Processing

Course Code

***Elective Lab

KEC751A

Digital Image Processing Lab

KEC751B

VLSI Design Lab

KEC751C

Optical System and Networking Lab

KEC751D

Microwave & Radar Engineering Lab

^{***}Students will opt one subject from the list of Department Elective-IV with its corresponding lab. i.e. if someone has opted Digital Image Processing (KEC071) from Department Elective-IV then it will be mandatory to opt the DIP Lab (KEC751A).

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING COURSE OUTCOME (2022-23)

B. Tech IV (Semester VII)

KHU 701: Rural Development: Administration And Planning

CO	Course Outcomes
CO1	Students can understand the definitions, concepts and components of Rural Development.
CO2	Students will know the importance, structure, significance, resources of Indian rural economy.
CO3	Students will have a clear idea about the area development programmes and its impact.
CO4	Students will be able to acquire knowledge about rural entrepreneurship.
CO5	Students will be able to understand about the using of different methods for human resource planning.

		Mapp	oing of	Course	outco	mes v	vith Pr	ogram	outc	omes		
		KHU 7	01: Rur	al Dev	elopm	ent: A	dmini	stratio	n And	Plann	ing	
CO				Pro	gram ou	tcomes	(PO)					
со	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1	2	-	2	_	-	20	-	-	2	2
CO2	2	2	1	-	-	_	-	9 :	-	-	=	2
CO3	1	3	-	=	1	_	_	2	14	-	2	2
CO4	2	2	-	ā	2	-	-	-	-	-	_	2
CO5	3	2	-	-	2		-	-	-	_	2	2
Average	2	2	1.5	-	1.75	-	-	-	-	-		2

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING COURSE OUTCOME (2022-23)

KEC 074: Microwave & Radar Engineering

co	Course Outcomes
CO1	Analyze various parameters and characteristics of the transmission line and waveguide and also use of wave guide component as per applications.
CO2	Describe, analyze and design simple microwave circuits and devices e g couplers, Attenuators, Phase Shifter and Isolators. Student will also understand the microwave propagation in ferrites.
соз	Analyze the difference between the conventional tubes and the microwave tubes for the transmission of the EM waves.
CO4	Acquire knowledge about the handling and measurement of microwave equipment.
CO5	Differentiate different Radars, find applications and use of its supporting systems.

		Марр	ing of (Course	outco	mes v	vith Pr	ogram	outco	omes		
			KEC 0	74: M	icrow	ave &	Rada	r Engi	neeri	ng		
				Pro	gram ou	tcomes	(PO)	ž.				
со	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1	2	2	2	-	-		-	-		2
CO2	2	2	1	2	-	÷	¥	-	-	-	-	2
CO3	1	3	-	2	1	-	-		-	-	-	2
CO4	2	2	-	2	2	-	-	-	-	-	-	2
CO5	3	2	-	2	. 2	-	-	-	-	-	-	2
Average	2	2	1.5	2	1.75		20	-8	-		•	2

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING COURSE OUTCOME (2022-23)

KEC 076: Wireless & Mobile Communication

CO	Course Outcomes
CO1	Express the basic knowledge of mobile radio & cellular communication fundamentals and their
	application to propagation mechanisms, path loss models and multi path phenomenon.
CO2	Analyze the performance of various voice coding and diversity techniques.
CO3	Apply the knowledge of wireless transmission basics to understand the concepts of equalization and multiple access techniques.
CO4	Examine the performance of cellular systems being employed such as GSM, CDMA and LTE using various theoretical and mathematical aspects.
CO5	Express basic knowledge of Mobile Adhoc networks and the existing & upcoming data communication networks in wireless and mobile communication domain.

		Mapp	oing of	Course	outco	mes v	vith Pr	ogram	outc	omes			
			KEC 07	6: Wir	eless	& Mo	bile C	ommı	unicat	ion			
60	Program outcomes(PO)												
со	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	2	2	2	-	2	-	-	-	· ·	3	-	2	
CO2	1	2	2	2	-		-	-	-	-	-	2	
CO3	2	2	-	2	=	-	=	-	<u>=</u>	-	•	2	
CO4	2	2		2	2		-	-	-		-	2	
CO5	2	2	:=	-	2	-	-	-	-	-	-	2	
Average	1.8	2	2	2	2		-	-	<u> </u>	-	-	2	

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING COURSE OUTCOME (2022-23)

KOE 074: Renewable Energy Resources

CO	Course Outcomes
CO1	Explain renewable energy sources & systems.
CO2	Apply engineering techniques to build solar, wind, tidal, geothermal, bio fuel, fuel cell, Hydrogen and sterling engine.
CO3	Analyze and evaluate the implication of renewable energy. Concepts in solving numerical problems pertaining to solar radiation geometry and wind energy systems.
CO4	Demonstrate self -learning capability to design & establish renewable energy systems.

		Марр	oing of	Course	outco	mes v	vith Pr	ogran	outc	omes				
			KOE	074: R	enew	able E	nergy	Reso	urces					
со	Program outcomes(PO)													
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	2	2	2	25.	2		# 2	-	-	-		2		
CO2	1	2	2	2	-	-	-	-	-	-	-	2		
CO3	2	2	,-	2	-	-	-	-		-	1	2		
CO4	3	1		2	2	-	<u>.</u>	-	-	-	1	2		
Average	2	1.75	2	2	2	_	_	_	-	-	1	2		

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING COURSE OUTCOME (2022-23)

KEC751D: Microwave & Radar Engineering Lab

CO	Course Outcomes
CO1	Describe working on microwave testing bench.
CO2	Practically demonstrate the Characteristics of Reflex klystron using Microwave bench setup.
CO3	Demonstrate the performance of the Gunn diode using Microwave bench setup
CO4	Perform measurement of Frequency, attenuation, VSWR, Impedance of microwave passive device using Klystron Bench Setup.
CO5	Interpret the basics of Smith chart for solution of transmission line problems and impedance matching.

		Марр	oing of	Course	outco	mes v	vith Pr	ogram	outc	omes				
		K	EC751): Mic	rowav	e & R	adar E	ngine	ering	Lab				
со	Program outcomes(PO)													
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	2	1	2	-	2	-	40	-	-	-	-	2		
CO2	2	2	1	-	-	-	_	-	-	-	-	2		
соз	1	3	% =	-	1	-	-	-	-	-	-	2		
CO4	2	2	-	-	2	-	- E	-	-	-	-	2		
CO5	3	2	-	-	2			(5)	-	17.	1.00	2		
Average	2	2	1.5	•	1.75			-	=	-	-	2		

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING COURSE OUTCOME (2022-23)

KEC 752: Mini Project

CO	Course Outcomes
CO1	Be acquainted with appropriate utility.
CO2	Apply fundamental principles of science and engineering to design and fabricate models for diversified applications.
CO3	To enhance team spirit and improve the ability of students to work together for solution of common engineering problem.
CO4	To improve ability of students for the selection of material and manufacturing process and approach for solving an engineering problem with minimum cost.
CO5	To inculcate the habit of observing social problems and searching for a possible sustainable eco friendly solution.

		Mapp	oing of	Course	outco	mes v	vith Pr	ogram	outc	omes				
				KEC 7	752: N	1ini Pr	oject							
CO	Program outcomes(PO)													
со	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	3	2	1	-	2	-	-	-	-		1	2		
CO2	1	2	1	2	-	•	-	-	1	-	1	2		
соз	2	2	-	3	-	-	-	-	1	-	1	2		
CO4	2	2	-	1	2	-	-	-	1	-	1	2		
CO5	2	2	-	-	2	=.	-	<u>≒</u> ,	1	-	1	2		
Average	2	2	1	2	2	-	-		1	-	1	2		

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING COURSE OUTCOME (2022-23)

KEC 753: Project I

CO	Course Outcomes
CO1	Criticize and experiment to arrive at solutions for real world mechanical engineering problems.
CO2	Analyse and evaluate to obtain solution for problems in mechanical engineering systems.
CO3	Demonstrate effective project execution and control techniques that result in successful projects.
CO4	Conduct project closure activities and obtain formal project acceptance.

		Марр	oing of	Course	outco	mes v	vith Pr	ogran	outc	omes	4 4 9	e rss			
				KEC	753 :	Proje	ct I								
со	Program outcomes(PO)														
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12			
CO1	2	2	2	-	2	-	-	_	-	-	2	_			
CO2	2	2	2	2		-	-	-	-	-	2	1			
CO3	2	2	-	2	-	-	-	<u>.</u>	-	50	2	1			
CO4	2	2	-	2	2	м В	-	-	-	•	2	-			
Average	2	2	2	2	2	-	-	-	-		2	1			

ELECTRONICS AND COMMUNICATION ENGINEERING

B.Tech. VIII Semester

Electronics and Communication Engineering

S. No.	Course Code	Course Title	Periods			Evaluation Scheme				End Semeste		Total	Credits
	*****	V (C)	L	T	P	CT	TA	Total	PS	TE	PE		
1.	KHU801/K HU802	HSMC -1 [#] /HSMC-2 [#]	3	0	0	30	20	50		100		150	3
2.		Open Elective –III	3	0	0	30	20	50		100		150	3
3.		Open Elective –IV	3	0	0	30	20	50		100		150	2
4.	KEC-851	Project II	0	0	18		20	50	100	100	300	150	9
		MOOCs (Essential for Hons, Total											
		Total		2								850	18

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING COURSE OUTCOME (2022-23)

B. Tech IV (Semester VIII)

KHU802: Project Management & Entrepreneurship

CO	Course Outcomes
CO1	Students can understand the definitions, concepts and components of Rural Development. Development.
CO2	Students will know the importance, structure, significance, resources of Indian rural economy
CO3	Students will have a clear idea about the area development programmes and its impact
CO4	Students will be able to acquire knowledge about rural entrepreneurship.
CO5	Students will be able to understand about the using of different methods for human resource planning.

Mapping of Course outcomes with Program outcomes KHU802: Project Management & Entrepreneurship Program outcomes(PO) CO PO1 PO2 PO₃ PO4 **PO5** PO6 PO9 PO10 PO11 PO7 **PO8** PO12 CO1 2 1 2 2 2 2 1 CO2 2 2 2 2 1 CO3 2 2 1 3 1 **CO4** 2 2 2 1 2 **CO5** 2 3 2 2 1 2 1 2 2 1.75 2 1.5 Average

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING COURSE OUTCOME (2022-23)

KOE 081: Cloud Computing

CO	Course Outcomes
CO1	Explain the core concepts of the cloud computing paradigm: how and why this paradigm shift came about, the characteristics, advantages and challenges brought about by the various models and services in cloud computing.
CO2	Apply the fundamental concepts in datacenters to understand the tradeoffs in power, efficiency and cost.
CO3	Identify resource management fundamentals, i.e. resource abstraction, sharing and sandboxing and outline their role in managing infrastructure in cloud computing.
CO4	Analyze various cloud programming models and apply them to solve problems on the cloud.

		Mapp	oing of	Course	outco	mes v	vith Pr	ogran	outc	omes				
			KOE	081: C	loud	Comp	uting							
со	Program outcomes(PO)													
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	2	2	2	-	2	-	9	-	-	£	-	2		
CO2	2	2	2	2	-	-	-	-	-	-		2		
CO3	2	2	-	2	3 0	-	5			-	-	2		
CO4	2	2	-	2	2		=0	:=	-	-	-	2		
Average	2	2	2	2	2	.= .	-0		-	ı. .		2		

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING COURSE OUTCOME (2022-23)

KOE 094: Digital And Social Media Marketing

СО	Course Outcomes
CO1	Demonstrate advanced understanding of today's digital and social media marketing landscape.
CO2	Demonstrate how user-generated content in social media can be collected and analysed to Guide marketing strategy.
CO3	Demonstrate the understanding of digital and social media analytics and the capability to use online analytical tools.
CO4	Articulate specialised knowledge of digital and social media marketing in both oral and written contexts.
CO5	Demonstrate the capability to work both independently and in a team environment employing inquiry processes to complete marketing projects.

		Mapp	oing of (Course	outco	mes v	vith Pr	ogram	outco	omes		
	KOE 094: Digital And Social Media Marketing											
со	Program outcomes(PO)											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1	2	-	2	-	-	4	:: <u>2</u>	-	4	2
CO2	2	2	2	-	-	-		-	-	-	=	2
соз	1	3	-	-8	1	-	-	-	::-	-	-	2
CO4	2	2	-		2	-	-	-	-	-		2
CO5	3	2	-	-	2	•	-	3	-	-	2	2
Average	2	2	1.5	•	1.75	•	-	_	2		-	2

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING COURSE OUTCOME (2022-23)

KEC-851 Project II

CO	Course Outcomes									
CO1	Criticize and experiment to arrive at solutions for real world mechanical engineering problems.									
CO2	Analyse and evaluate to obtain solution for problems in mechanical engineering systems.									
CO3	Demonstrate effective project execution and control techniques that result in successful projects.									
CO4	Conduct project closure activities and obtain formal project acceptance									

		Марр	oing of	Course	outco	mes v	vith Pr	ogram	outc	omes		
	KEC-851 Project II											
со	Program outcomes(PO)											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	2		2	-	-	,-,	1	-	2	2
CO2	2	2	2	2	-	-	-	-	1	-	2	2
CO3	2	2	-	2		-	-	-	1	-	2	2
CO4	2	2	-	2	2	-	-	-	1	-	2	2
Average	2	2	2	2	2	-	8-		1	-	2	2

SAMPLE OF CO-PO MAPPING

Department of Information Technology

Engineering Graduates will be able to: -

- **1. Engineering knowledge:** Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- **2. Problem analysis:** Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- **3. Design/development of solutions:** Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- **4. Conduct investigations of complex problems:** Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- **5. Modern tool usage:** Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
- **6.** The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- **7. Environment and sustainability:** Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- **8. Ethics:** Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- **9. Individual and team work:** Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- **10. Communication:** Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- **11. Project management and finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- **12. Life-long learning:** Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

· COs to be mapped with POs in Matrix form.

Correlation levels 1, 2, 3 as defined (1: low, 2: Moderate, 3: High).

COs will be mapped with POs on the basis of above-mentioned levels.

• If there is no correlation, put "-" or left blank or put zero.

B.TECH (COMPUTER SCIENCE AND ENGINEERING)

Information Technology

SEMESTER- III

SI. No.	Subject Codes	Subject	P	erio	ds	Ev	aluati	on Schei	me	(855)	nd ester	Total	Credi
	Codes		L	T	P	CT	TA	Total	PS	TE	PE		
1	KOE031- 38/ KAS302	Engineering Science Course/Maths-IV	3	1	0	30	20	50		100		150	4
2	KAS301/ KVE301	Technical Communication/Universal Human Values	3	0	0	30	20	50		100		150	3
3	KCS301	Data Structure	3	1	0	30	20	50		100		150	4
4	KCS302	Computer Organization and Architecture	3	1	0	30	20	50		100		150	4
5	KCS303	Discrete Structures & Theory of Logic	3	0	0	30	20	50		100		150	3
6	KCS351	Data Structures Using C Lab	0	0	2				25		25	50	1
7	KCS352	Computer Organization Lab	0	0	2				25		25	50	1
8	KCS353	Discrete Structure & Logic Lab	0	0	2				25		25	50	1
9	KCS354	Mini Project or Internship Assessment*	0	0	2			50				50	1
10	KNC301/ KNC302	Computer System Security/Python Programming	2	0	0	15	10	25		50			0
11		MOOCs (Essential for Hons. Degree)											-
		Total										950	22

*The Mini Project or internship (3-4 weeks) conducted during summer break after II semester and will be assessed during III semester.

			S	EM	EST	ER-	IV						
Sl. No.	Subject Codes	Subject	P	erio	ds	E	valuat	ion Sche	me	Sem		Total	Credi
	Codes		L	T	P	CT	TA	Total	PS	TE	PE		
1	KAS402/ KOE041- 48	Maths IV/Engg. Science Course	3	1	0	30	20	50		100		150	4
2	KVE401/ KAS401	Universal Human Values/Technical	3	0	0	30	20	50		100		150	3
	KA5401	Communication	2	1	0								
3	KCS401	Operating Systems	3	0	0	30	20	50		100		150	3
4	KCS402	Theory of Automata and Formal Languages	3	1	0	30	20	50		100		150	4
5	KIT401	Web Designing	3	1	0	30	20	50		100		150	4
6	KCS451	Operating Systems Lab	0	0	2				25		25	50	1
7	KIT451	Web Designing Lab	0	0	2				25		25	50	1
8	KCS453	Python Language Programming Lab	0	0	2				25		25	50	1
9	KNC402/ KNC401	Python Programming/ Computer System Security	2	0	0	15	10	25		50			0
10		MOOCs (Essential for Hons. Degree)											
		Total										900	21

B.TECH (INFORMATION TECHNOLOGY AND CSI) CURRICULUM STRUCTURE

Sl. No.	Subject	Subject	P	erio	ds	Ev	aluati	on Sche	me	10000	nd ester	Total	Credit
	Codes		L	T	P	CT	TA	Total	PS	TE	PE		
1	KCS501	Database Management System	3	1	0	30	20	50		100		150	4
2	KIT501	Web Technology	3	1	0	30	20	50		100		150	4
3	KCS503	Design and Analysis of Algorithm	3	1	0	30	20	50		100		150	4
4	Deptt- Elective-I	Departmental Elective-I	3	0	0	30	20	50		100		150	3
5	Deptt Elective-II	Departmental Elective-II	3	0	0	30	20	50		100		150	3
6	KCS551	Database Management System Lab	0	0	2		,		25		25	50	1
7	KIT551	Web Technology Lab	0	0	2				25		25	50	1
8	KCS553	Design and Analysis of Algorithm Lab	0	0	2				25		25	50	1
9	KCS554	Mini Project or Internship Assessment*	0	0	2				50			50	1
10	KNC501/ KNC502	Constitution of India, Law and Engineering / Indian Tradition, Culture and Society	2	0	0	15	10	25		50			
11		MOOCs (Essential for Hons. Degree)											
		Total	17	3	8							950	22

^{*}The Mini Project or internship (4 weeks) conducted during summer break after IV semester and will be assessed during V semester.

SI. No.	Subject	Subject	P	erio	ds	Ev	aluatio	on Sche	me	Sem	nd ester	Total	Credit
	Codes		L	T	P	CT	TA	Total	PS	TE	PE		
1	KCS601	Software Engineering	3	1	0	30	20	50		100		150	4
2	KIT601	Data Analytics	3	1	0	30	20	50		100		150	4
3	KCS603	Computer Networks	3	1	0	30	20	50		100		150	4
4	Deptt- Elective-III	Departmental Elective-III	3	0	0	30	20	50		100		150	3
5		Open Elective-I	3	0	0	30	20	50		100		150	3
6	KCS651	Software Engineering Lab	0	0	2				25	1	25	50	1
7	KIT651	Data Analytics Lab	0	0	2				25		25	50	1
8	KCS653	Computer Networks Lab	0	0	2				25		25	50	1
9	KNC601/ KNC602	Constitution of India, Law and Engineering / Indian Tradition, Culture and Society	2	0	0	15	10	25		50			
10		MOOCs (Essential for Hons. Degree)				•							
	•	Total	0	3	6							900	21

Departmental Elective-I

- 1. KIT-051 Statistical Computing
- 2. KIT-052 Compiler Design
- 3. KCS-053 Computer Graphics
- 4. KCS-054 Object Oriented System Design

Departmental Elective-II

- 5. KCS-055 Machine Learning Techniques
- 6. KCS-056 Application of Soft Computing
- 7. KCS-057 Augmented & Virtual Reality
- 8. KCS-058 Human Computer Interface

Departmental Elective-III

- 1. KCS-061 Big Data
- 2. KCS-062 Image Processing
- 3. KIT -061 Blockchain Architecture Design
- 4. KCS-064 Data Compression

INFORMATION TECHNOLOGY /CSIT

B.TECH IV YEAR

(INFORMATION TECHNOLOGY /CSIT) CURRICULUM STRUCTURE

		SI	EMES	STEF	R- VII			-11					
Sl. No.	Subject	Subject	F	Perio	ds	F	Evaluat	ion Schen	ne	100	nd ester	Total	Credit
. 10.	Codes		L	T	P	CT	TA	Total	PS	TE	PE		
1	KHU701/KHU702	HSMC -1 / HSMC-2	3	0	0	30	20	50		100		150	3
2	KCS07X	Departmental Elective-IV	3	0	0	30	20	50		100		150	3
3	KCS07X	Departmental Elective-V	3	0	0	30	20	50		100		150	3
4	KOE07X	Open Elective-II	3	0	0	30	20	50		100		150	3
5	KIT751A	The Department may conduct one Lab of either of the two Electives (4 or 5) based on the elective chosen for the curriculum. The Department shall on its own prepare complete list of practical for the Lab and arrange for proper setup and conduct accordingly.	0	0	2				25		25	50	1
6	KIT752	Mini Project or Internship Assessment*	0	0	2				50		11	50	1
7	KIT753	Project 1	0	0	8				150			150	4
8	, , , , , , , , , , , , , , , , , , ,	MOOCs (Essential for Hons. Degree)							ļ,_				
		Total	12	0	12	X 25	5)]+					850	18

^{*}The Mini Project or internship (4 - 6 weeks) conducted during summer break after VI semester and will be assessed during VII semester.

SEMESTER-VIII

Sl.	Subject	Subject	F	Period	ls	F	Evaluat	ion Schen	ne		nd ester	Total	Credit
No.	Codes		L	T	P	CT	TA	Total	PS	TE	PE		
1	KHU801/KHU802	HSMC-2#/HSMC-1#	3	0	0	30	20	50		100		150	3
2	KOE08X	Open Elective-III	3	0	0	30	20	50		100		150	3
3	KOE08X	Open Elective-IV	3	0	0	30	20	50		100		150	3
4	KIT851	Project	0	0	18				100		300	400	9
5		MOOCs (Essential for Hons. Degree)					1		L		L		
		Total	9	0	18							850	18

Curriculum & Evaluation Scheme (VII & VIII semester)

Page 2

INFORMATION TECHNOLOGY /CSIT

Departmental Elective-IV

- 1. KCS071 Artificial Intelligence
- 2. KCS072 Natural language processing
- 3. KCS073 High Performance Computing
- 4. KCS074 Cryptography and Network Security
- 5. KCS075 Design & Development of Applications
- 6. KCS076 Software Testing
- 7. KCS077 Distributed Systems

Departmental Elective-V

- 1. KCS078 Deep Learning
- 2. KCS079 Service Oriented Architecture
- 3. KCS710 Quantum Computing
- 4. KCS711 Mobile Computing
- 5. KCS712 Internet of Things
- 6. KCS713 Cloud Computing
- 7. KIT071 Software Project Management

DEPARTMENT OF INFORMATION TECHNOLOGY

COURSE OUTCOME (2022-2023)

B. Tech II (Semester III)

KAS302: MATH IV

CO	Course Outcomes
CO1	Remember the concept of partial differential equation and to solve partial differential equations.
CO2	Analyze the concept of partial differential equations to evaluate the problems concerned with partial differential equations.
CO3	Understand the concept of correlation, moments, skewness and kurtosis and curve fitting.
CO4	Remember the concept of probability to evaluate probability distributions.
CO5	Apply the concept of hypothesis testing and statistical quality control to create control charts.

		Марр	oing of	Cours	e outc	omes v	with P	rogra	m out	comes		
				KA	S302:	MAT	H IV					
СО]	Progran	n outcoi	mes(PO)				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO11	PO12
CO1	2	2	2	-	2	-	-	-	-	-	-	1
CO2	3	3	2	2	-		-	-	_	_	_	1
CO3	2	2	2	2	-	-	•	-	-	-	1	1
CO4	2	2	1=	2	2	-	-	-	-	-	1	1
CO5	2	2	-	-	2	-	1	-	-	17-	2	1
Average	2.2	2.2	2	2	2	-	1	-	-	-	1.33	1

2

Average

R.D. ENGINEERING COLLEGE, GHAZIABAD

DEPARTMENT OF INFORMATION TECHNOLOGY

COURSE OUTCOME (2022-2023)

B. Tech II (Semester III)

KVE 301: Universal Human Value

			11.	E 301	· Oniv	cisai i	numa	n van	ie			
CO				Cour	rse Ou	tcomes						
CO1	Unde	rstand the	significa	nce of v	alue in	puts in a	classro	oom dis	tinguish	hetwee	n values	and al.:11
	under	stand the	need, basi	ic guidel	ines, co	ntent o	f value e	education	n explo	re the m	eaning of	happines
	and p	rosperity a	and do a c	orrect ap	ppraisal	of the cu	urrent sc	enario i	n the soc	eiety	8	PP
CO2	Distin	guish bet	ween the	Self and	the Boo	dy, unde	rstand t	he mean	ing of F	Jarmony	in the Se	If the Co
	existe	nce of Sel	f and Boo	ly.		•			6 0.1	armony	in the 5c	ii tile CC
CO3	Unders	stand the v	value of h	armonio	us relati	onshin h	ocad au				-	
	accepta	able feelin	igs in hun	an-hum	an relati	ionships	ased on and exp	trust, re	spect an	d other	naturally	mious
	society	•										
CO4	Under in the	stand the	harmony	in natur	e and ex	istence,	and wor	rk out th	eir mutu	ally ful	filling par	ticipation
	in the	nature.										
CO5	Disting	uish betw	een ethica	al and ur	nethical	practices	S.					
		Mapp	oing of	Cours	e outc	omes v	with P	rogra	m out	comes		
			I	VE 30	1: Univ	versal H	Iuman	Value				
СО						n outco		- 1				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO11	PO12
CO1	2	2	1	-	2	1	1	-	-	-	1	-
CO2	3	2	2	-	2	-	-	-	-	-	-	-
CO3	2	1	3	_	_	2	1		12-		1	
CO4									-	-	1	-
	1	3	-	-	2	3	-		-	-	1	
C O 5	2	2	*	-	2	-	2=	-	-	1:=	-	<u> </u>

Director
R.D. Engineering College
Duhai, Ghaziabad

1

2

2

DEPARTMENT OF INFORMATION TECHNOLOGY

COURSE OUTCOME (2022-2023)

B. Tech II(Semester III)

KCS301: Data Structures Using C

CO	Course Outcomes
CO1	Understand the complexity of algorithms by Describing various data structures and their representations in memory withtheir common applications.
CO2	Describe the concept of recursion and implement various data structures like stack, queue, list, tree, and graph using static and dynamic memory allocations.
CO3	Study and Apply various searching and sorting algorithms on different data structures.
CO4	Analyze the algorithmic implementation of non-linear data structures such as searching and sorting by comparing their computational efficiency.
CO5	Evaluate the alternate data structures algorithm with respect to its performance to solve a real-world problem.

		Mapp	ing of	Cours	e outc	omes	with P	rogra	m out	comes	1	
KCS.	301: Da					X-54						
СО	Progra	m outcon	nes(PO)						*			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO11	PO12
CO1	3	3	2	2	1	1	1	1	1	1	1	2
CO2	3	3	2	2	2	1	1	1	1	1	1	2
CO3	3	3	2	3	2	1	1	1	1	1	1	2
CO4	3	3	2	3	2	2	1	1	1	1	1	2
CO5	3	3	3	3	2	2	1	1	2	2	2	3
Average	3	3	2.1	2.6	1.8	1.4	1	1	1.2	1.2	1.2	2.1

DEPARTMENT OF INFORMATION TECHNOLOGY

COURSE OUTCOME (2022-2023)

B. Tech II(Semester III)

KCS302: Computer Organization and Architecture

CO	Course Outcomes
CO1	Understand and describe the basic organization and operation of the components of a digital computer system.
CO2	Illustrate various arithmetic and logical operations on different types of numbers to design an arithmetic and logic unit.
CO3	Analyze the performance issues of the processor and classify the control unit implementation techniques.
CO4	Categorize the hierarchical memory system and examine the virtual memory implementation techniques.
CO5	Compare the different I/O data transfer techniques, and describe the different ways of communication among I/O devices and standard I/O interfaces.

		Mapp	ing of	Cours	e outc	omes	with P	rogra	m out	comes	3	0		
		k	CS302:	Comp	uter Oı	rganiza	tion an	d Arch	itectur	·e				
CO	Program outcomes(PO)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO11	PO12		
CO1	3	3	2	1	2	1	_	-	1	-	1	1		
CO2	3	3	3	1	3	1	-	-	1	_	1	1		
CO3	2	2	2	1	3	1	-	-	1	-	1	1		
CO4	2	2	2	1	1	1	-	-	1		1	1		
CO5	2	2	2	1	1	1	-	-	1	_	1	1		
Average	2.4	2.4	1.6	1	2	1	1	-	1	-//	ed.	1		

DEPARTMENT OF INFORMATION TECHNOLOGY

COURSE OUTCOME (2022-2023)

B. Tech II(Semester III)

KCS303: Discrete Structures & Theory of Logic

CO	Course Outcomes
CO1	Acquire Knowledge of Logical Notations which is used to define and understand the basic fundamental mathematical concepts such as sets, relations, functions.
CO ₂	Discuss various structures and properties of modern algebra.
CO3	Employ logical abilities such as reasoning to set up mathematical models for real life problems by applying advanced counting and computing techniques.
CO4	Demonstrate various problems in the field of computer science using trees and graphs.
CO5	Design a solution with the help of induction hypotheses, simple induction proofs and recurrences.

		Mapp	ing of	Course	e outc	omes	with P	rogra	m out	comes				
			KCS30											
СО	Program outcomes(PO)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO11	PO12		
CO1	3	2	2	3	2	2	1	1	1	1	1	2		
CO2	3	3	3	3	2	2	1	1	1	1	1	2		
CO3	3	2	2	3	3	2	2	1	1	1	1	2		
CO4	3	3	2	2	3	2	2	1	1	1	1	2		
CO5	3	2	2	2	3	2	2	1	1	1	1	2		
Average	3	2.4	2.1	2.6	2.6	2	1.6	1	1		1	2		

DEPARTMENT OF INFORMATION TECHNOLOGY

COURSE OUTCOME (2022-2023)

B. Tech II (Semester III)

KNC302: Python Programming

CO	Course Outcomes
CO1	Students are able to understand and read and write simple Python programs.
CO2	Students are able to understand and develop Python programs with conditionals and loops.
CO3	Students are able to understand and define Python functions and to use Python data structures—lists, tuples, dictionaries.
CO4	Students are able to understand and do input/output with files in Python.
CO5	Students are able to understand and do searching, sorting and merging in Python.

		Mapp	oing of	Cours	e outc	omes v	with P	rogra	m out	comes				
			KNC3	802: Py	thon	Progra	ammir	ıg						
СО	Program outcomes(PO)													
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO11	PO12		
CO1	2	3	3		3		3	2	2	-	-	3		
CO2	3	3	3	2	3	2	2	2	3	-	-	3		
CO3	3	3	2	3	3	3	3	2	3	-	-	3		
CO4	3	3	3	3	3	3	2	2	3	-	-	3		
CO5	3	3	3	3	3	3	2	2	3	Œ	•	3		
Average	2.8	3	2.8	2.75	3	2.7	2.4	2	2.8	-		3		

DEPARTMENT OF INFORMATION TECHNOLOGY

COURSE OUTCOME (2022-2023)

B. Tech II(Semester III)

KCS351: Data Structure Lab

CO	Course Outcomes
CO1.	Implement various Sorting and Searching Algorithms.
CO2.	Analyze the recursive implementation of different sorting and searching algorithms.
CO3.	Implement various data Structure using static and dynamic memory allocation.
CO4.	Demonstrate various operations like traversal, insertion, deletion on tree data structure.
CO5.	Design and Implement practical applications based on graphs and shortest paths.
	restored applications based on graphs and shortest paths.

		Mapı	oing of	Cours	e outc	omes	with P	rogra	m out	comes				
	1			CS35										
CO	Program outcomes(PO)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO11	PO12		
CO1	3	3	3	2	2	2	1	1	1	1	1	2		
CO2	3	3	3	3	2	2	1	1	1	1	1			
CO3	3	3	3	3	2	2	1				1	2		
CO4				3	2	2	1	1	1	1	1	2		
	3	3	3	3	2	2	1	1	1	1	1	2		
CO5	3	3	3	3	2	2	1	1	I	1	1	2		
Average	3	3	3	2.8	2	2	1	1	1	1	1	2		

DEPARTMENT OF INFORMATION TECHNOLOGY

COURSE OUTCOME (2022-2023)

B. Tech II(Semester III)

KCS352: Computer Organization Lab

CO	Course Outcomes
CO1.	Examine the output of the basic logic gates for different combinations of
CO2.	Design and simulate the combinational circuits for binary arithmetic (such as adders, subtractors and multiplier) and code converter
CO3.	Design and simulate combinational circuits for encoders/decoders and selection devices multiplexers/de-multiplexersusing logic gates
CO4.	Design and simulate the basic building block of the sequential circuits (i.e. SR and D Flip Flops) using logic gates.
CO5.	Design and simulate the 2-bit Arithmetic Logic Unit using logic gates.

		Mapı	oing of	Cours	e outc	omes	with P	rogra	m out	comes			
				CS352									
СО	Program outcomes(PO)												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO11	PO12	
CO1	3	2	2	1	3	2	-	-	1	-	1	1	
CO2	3	2	3	1	3	2	_	_	1		1	1	
CO3	2	2	3	1	3	1	-	-	1	-	1	1	
CO4	2	2	3	1	2	1	-	_	1	-	1	1	
CO5	2	2	3	1	2	1	-	-	1	-	1	1	
Average	2.4	2	2.8	1	2.6	1.4	-	-	1	_	1	1	

DEPARTMENT OF INFORMATION TECHNOLOGY

COURSE OUTCOME (2022-2023)

B. Tech II(Semester III)

KCS353: Discrete Structure and Logic Lab

CO	Course Outcomes
CO1.	To Implement various Set operations.
CO2.	To Demonstrate various basic Maple commands.
CO3.	To Implement various Inductive techniques, Recursive Techniques and expected value problems using Maple script.
CO4.	To Design and Implement practical applications based on graphs and shortest paths.
CO5.	To Implement various programming problems based on binary search.

		Марр	oing of	Cours	e outc	omes	with P	rogra	m out	comes			
			K	CS353	3 : Dis	crete	Struc	ture a	and L	ogic I	ab		
СО	Program outcomes(PO)												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO11	PO12	
CO1	3	2	2	3	2	2	1	1	1	1	1	2	
CO2	3	3	3	3	2	2	1	1	1	1	1	2	
CO3	3	2	2	3	3	2	2	1	1	1	1	2	
CO4	3	3	2	2	3	2	2	1	1	1	1	2	
CO5	3	2	2	2	3	2	2	1	1	1	1	2	
Average	3	2.4	2.2	2.6	2.6	2	1.6	1	1	1	1	2	

DEPARTMENT OF INFORMATION TECHNOLOGY

COURSE OUTCOME (2022-2023)

B. Tech II(Semester III)

KCS354: Mini Project or Internship Assessment

CO	Course Outcomes
CO1.	Students acquire 'real' working environment and get acquainted with the organizationstructure, business operations and administrative functions
CO2.	Students develop hands-on experience in the student's related field so that they can relate andreinforce what has been taught at the institute
CO3.	Students acquire knowledge of cooperation and to develop synergetic collaboration betweenindustry
CO4.	Students get stage for the future recruitment by the potential employers and get awareness of the social, cultural, global and environmental responsibility as an engineer.
CO5.	Students acquire presentation and demonstration skills to effectively communicate the progressof the work to peers and superiors using audio/video, software tools.

		Mapı	oing of	Cours	e outc	omes	with P	rogra	m out	comes		
KCS	354 : N	Iini Pr										
CO					Progran	n outco	mes(PO)				-
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO11	PO12
CO1	3	2	2	2	3	3		-	3	2	2	3
CO2	3	3	2	3	3	3	3	3	2	2	2	
CO3	3	3	2	2	3	3	•	3	2	2	2	3
CO4	3	3	3	2	-	3	3	-	3	2	_	3
CO5	3	2	2	-	3	-	-	3	3	-	2	
Average	3	2.6	2.2	2.25	3	3	3	3	2.6	2	2	3

DEPARTMENT OF INFORMATION TECHNOLOGY

COURSE OUTCOME (2022-2023)

B. Tech II(Semester IV)

KOE 049 : DIGITAL ELECTRONICS

CO	Course Outcomes
CO1	Apply concepts of Digital Binary System and implementation of Gates.
CO2	Analyze and design of Combinational logic circuits.
CO3	Analyze and design of Sequential logic circuits with their applications.
CO4	Implement the Design procedure of Synchronous & Asynchronous Sequential Circuits.
CO5	Apply the concept of Digital Logic Families with circuit implementation

		Mapp	ing of	Cours	e outc	omes	with F	Progra	m out	come	S				
KOE	049 : DI														
СО	Program outcomes(PO)														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO11	PO12			
CO ₁	3	2	3	-	1	1	3	-	-	-	1	_			
CO2	2	1	2	-	2	1	1	-	-	-	1	_			
CO3	1	2	1	-	3	1	2	-	-	-	1				
CO4	2	3	1	-	2	1	-	-	-	_	1				
CO5	2	2	2	-	2		-	-	-	,-	-	-			
Average	2	2	1.8		2	1	2	-	-	_	1				

R.D. Engineering College Duhai, Ghaziabad

DEPARTMENT OF INFORMATION TECHNOLOGY

COURSE OUTCOME (2022-2023)

B. Tech II(Semester IV)

KAS 401: TECHNICAL COMMUNICATION

CO	Course Outcomes
CO1	Students will be enabled to understand the nature and objective of Technical Communication relevant for the work place as Engineers.
CO2	Students will utilize the technical writing for the purposes of Technical Communication and its exposure in various dimensions.
CO3	Students would imbibe inputs by presentation skills to enhance confidence in face of diverse audience.
CO4	Technical communication skills will create a vast know-how of the application of learning to promote their technical competence.
CO5	It would enable them to evaluate their efficacy as fluent & efficient communicators By learning the voice-dynamics.

		Марр	ing of	Cours	e outc	omes	with F	Progra	m out	comes	3	
			S 401 :									100
CO	Progra	m outcon										
)	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO11	PO12
CO1	1	2	3	1	2	1	2	2	_	2	_	2
CO2	1	2	3	1	2	2	2	1	_	2	_	2
CO3	1	1	2	1	1	2	2	2	-	2	-	3
CO4	2	1	3	2	1	1	2	1	-	2		3
CO5	1	1	2	1	2	1	1	2	-	2	_	2
Average	1.2	1.4	2.6	1.2	1.6	1.4	1.8	1.6	-	2	-	2.4

Duhai, Ghaziabad

DEPARTMENT OF INFORMATION TECHNOLOGY

COURSE OUTCOME (2022-2023)

B. Tech II (Semester IV)

KIT401: WEB DESIGNING

CO	Course Outcomes
CO1	Understand principle of Web page design and about types of websites
CO2	Visualize and Recognize the basic concept of HTML and application in web designing.
CO3	Recognize and apply the elements of Creating Style Sheet (CSS).
CO4	Understanding the basic concept of Java Script and its application.
CO5	Introduce basics concept of Web Hosting and apply the concept of SEO

		Mapı	oing of	Cours	e outc	omes	with P	rogra	m out	comes		
			KIT4	V							3	
CO		1			Progran	n outco	mes(PO)				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO11	PO12
CO1	2	2	3	2	2	3	2	1	2	1	1	2
CO2	2	3	2	2	2	3	2	1	2	1	1	2
CO3	3	3	3	2	3	3	3	1	2	1	1	3
CO4	3	2	3	2	3	3	3	1	3	1	1	3
CO5	2	2	3	2	3	3	3	3	3	1	1	3
Average	2.4	2.4	2.8	2	2.6	3	2.6	1.4	2.4	erin	1	2.6

DEPARTMENT OF INFORMATION TECHNOLOGY

COURSE OUTCOME (2022-2023)

B. Tech II (Semester IV)

KCS401: Operating Systems

CO	Course Outcomes	
CO1	Understand the structure and functions of OS	
CO2	Learn about Processes, Threads and Scheduling algorithms.	
CO ₃	Understand the principles of concurrency and Deadlocks	
CO4	Learn various memory management scheme	
CO5	Study I/O management and File systems.	

	E)	Mapı	oing of	Cours	e outc	omes	with P	rogra	m out	comes	· · · · · · · · · · · · · · · · · · ·	
	1		KCS4									
СО		1			Progran	n outco	mes(PO)				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO11	PO12
CO1	1	1	1	1	1	1	1	1	1	1	1	3
CO2	2	1	2	2	3	-	-	-	1	3	2	2
CO3	3	3	1	3	3	-	-	-	1	3	3	3
CO4	3	3	1	3	3	-	-	-	1	3	2	2
CO5	3	2	1	2	3	1	-	-	1	3	3	3
Average	2.4	2	1.2	2.2	2.6	1	1	1	1	2.6	2.2	2.6

DEPARTMENT OF INFORMATION TECHNOLOGY

COURSE OUTCOME (2022-2023)

B. Tech II (Semester IV)

KNC401: Computer System Security

CO	Course Outcomes
CO1	Students acquire knowledge to recognize software bugs that pose cyber security threatsand to
CO2	Students acquire knowledge to define cyber attack scenarios to web browsers and webservers and to explain how to mitigate such threats
CO3	Students acquire knowledge to discover and explain mobile software bugs posing cybersecurity students acquire knowledge to discover and explain mitigation techniques.
CO4	Students acquire knowledge to articulate the urgent need for cyber security in critical computer systems, networks, and world wide web, and to explain various threat scenarios
CO5	Students acquire knowledge to the well known cyber attack incidents, explain the attack scenarios, and apply mitigation techniques.

		Mapp	ing of	Cours	e outc	omes	with P	rogra	m out	come	<u> </u>	
KNC	Mapping of Course outcomes with Program outcomes KNC 401: Computer System Security											
СО	Progra	m outcon	nes(PO)									
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO11	PO12
CO1	2	3	2	3	2	3	-	2	_	-	_	3
CO2	2	3	2	2	3	-	-	2	_	_	_	3
CO3	3	3	2	2	2	-	-	2	-	-	-	3
CO4	2	2	2	2	3	-	-	2	_		_	3
CO5	2	2	2	2		-	-	2	-	_		3
Average	2.2	2.6	2	2.2	2.5	3	-	2	-	-	-	3

DEPARTMENT OF INFORMATION TECHNOLOGY

COURSE OUTCOME (2022-2023)

B. Tech II (Semester IV)

KCS402: Theory of Automata and Formal Languages

CO	Course Outcomes
CO1	able to understand and construct finite state machines
CO ₂	able to prove the equivalence of languages described by finite state machines and regular expressions
CO3	able to construct pushdown automata and the equivalent context free grammars
CO4	able to prove the equivalence of languages described by pushdown automata and context free grammars.
CO5	able to construct Turing machines and Post machines.

		Mapp	oing of	Cours	e outc	omes	with P	rogra	m out	comes				
												-		
СО	KCS402: Theory of Automata and Formal Languages Program outcomes(PO)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO11	PO12		
CO1	3	3	3	2	3	-	-	-	_	2	_	3		
CO2	3	3	3	2	3	-	-	-	_	2	_	3		
CO3	3	3	3	2	3	-	-	-	-	2	-	3		
CO4	3	3	3	2	3	-	-	-		2	-	3		
CO5	3	3	3	2	3	-	-	-	-	2	-	3		
Average	3	3	3	2	3	-	-	-		2	_	3		

DEPARTMENT OF INFORMATION TECHNOLOGY

COURSE OUTCOME (2022-2023)

B. Tech II(Semester IV)

KCS451: Operating System Lab

CO	Course Outcomes
C O 1.	Students are familiarized with the operating system modules by implementing various process scheduling and memory management algorithms
C O2.	Students simulate various CPU Scheduling Algorithms (FCFS, SJF, RR, Priority, Multilevel queue) and compare their performance.
CO3.	Students stimulate banker's algorithms for deadlock avoidance, prevention.
CO4.	Students implement various page replacement algorithms for FIFO, LRU, andoptimal page replacement and do a comparative study.
C O5.	Students implement and evaluate different disk scheduling algorithms (FCFS, SSTF, SCAN).

		Mapı	oing of	Cours	e outc	omes	with P	rogra	m out	comes				
CO	KCS451 : Operating System Lab Program outcomes(PO)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO11	PO12		
CO1	3	3	3	3	2	2	3			0				
CO2	3	2					3	_	-	-	2	3		
~~~	3	3	3	2	2	2	3	-	-	-	2	3		
CO3	3	3	3	3	2	2	3	-	-	-	2	3		
CO4	3	3	3	2								3		
COS			3	3	2	2	3	-	-	-	2	3		
CO5	3	3	3	2	2	2	3	-	-	_	2	3		
Average	3	3	3	2.6	2	2	3	-	_		2	3		





**DEPARTMENT OF INFORMATION TECHNOLOGY** 

### COURSE OUTCOME (2022-2023)

B. Tech II( Semester IV)

KIT451: Web Designing Lab

CO	Course Outcomes
CO1.	Students will be able to understand basic HTML tags and static website designing.
CO2.	Students will be able to execute the frames having text, list, tables, hyperlinks and forms.
CO3.	Students will be able to understand the CSS and learning of using different CSS properties.
CO4.	Students will be able to apply the scripting into HTML pages using Java Script and its different aspects.
CO5.	Students will be able to implement the hosting and FTP.

		Mapp	ing of	Course	e outc	omes v	vith P	rograi	m out	comes				
	KIT451 : Web Designing Lab													
СО	Program outcomes(PO)													
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO11	PO12		
CO1	2	3	2	2	<b>=</b> 2	-	-		2		2	2		
CO2	2	2	3	2	2	-	-	-	2	2	2	2		
CO3	2	2	3	2	2	-	-	-	2	2	2	2		
CO4	2	2	2	2	2	-	2	-	2	2	2	2		
CO5	2	2	2	2	2	2		2	3	2	2	2		
Average	2	2.2	2.4	2	2	2	2	2	2.2	2	2	2		







DEPARTMENT OF INFORMATION TECHNOLOGY

### COURSE OUTCOME (2022-2023)

B. Tech II( Semester IV)

KCS453: Python Programming Lab

CO	Course Outcomes
CO1.	Students are able to describe the numbers, math functions, strings, list, tuples and dictionaries in python
CO2.	Students acquire the skills to apply different decision making statements and functions in python
CO3.	Students are able to interpret object oriented programming in python
CO4.	Students develop skill to understand and summarize different file handling operations
CO5.	Students demonstrate the ability to design GUI applications in python andevaluate different database operations

		Марр	oing of	Cours	e outc	omes v	with P	rogra	m out	comes				
	KCS453 : Python Programming Lab													
CO	Program outcomes(PO)													
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO11	PO12		
CO1	3	2	2	3	3	2	3	-	-	-	3	3		
CO2	3	2	3	3	2	3	1	-	-	-	3	3		
CO3	3	2	3	2	3	3	3	-	-	-	3	2		
CO4	3	2	3	2	1	2	1	-	-	-	2	3		
CO5	3	2	3	-8	3	3	2	<b>2</b> 11	•	-	2	3		
Average	3	2	2.8	2.5	2.4	2.6	2	-	-	-	2.6	2.8		



### R.D. ENGINEERING COLLEGE, GHAZIABAD

**DEPARTMENT OF INFORMATION TECHNOLOGY** 

#### COURSE OUTCOME (2022-2023)

### B. Tech III (Semester V)

### KCS 501: Database Management System

CO	Co	urse Ou	itcomes	3										
CO1	Apply kn	owledge o	of databas	se for rea	l life ap	plication	ıs.							
CO2	Apply que	ry proces	sing tech	niques to	automa	ate the re	eal time	problem	s of dat	abases.				
CO3	Identify ar	nd solve th	ne redund	ancy pro	blem in	databas	e tables	using no	ormaliza	ation.	5 31 %			
CO4	Understa database	Understand the concepts of transactions, their processing so they will familiar with broad range of database management issues including data integrity, security.  Design, develop and implement a small database project using database tools.												
CO5	Design, d	evelop an	d implem	ent a sm	all data	base pro	ject usin	ig databa	ase tools	S				
KCS	501 : Γ		ing of C se Mar					rograr	n outc	comes				
CO	Program outcomes(PO)													
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	3	3	3	3	2	1	1	2	2	2	3	2		
CO2	3	3	3	3	2	1	1	1	2	2	3	2		
CO3	3	3	3	3	2	1	1	1	2	2	2	2		
CUS														
	3	2	3	3	2	2	2	1	2	2	2	2		
CO4	3 2	2	3	3	2	2	2	1 2	2	2	2	2		







**DEPARTMENT OF INFORMATION TECHNOLOGY** 

### COURSE OUTCOME (2022-2023)

### B. Tech III (Semester V)

KCS 503: Design and Analysis of Algorithm

CO	Co	urse Ou	itcomes										
CO1	Understar	nd the de	signing i	new algo	orithms,	prove	them co	orrect, a	nd anal	yze thei	r asympto	otic and	
	absolute r	untime ar	dmemor	y deman	ds.								
CO2	Apply the	algorithm	to solve	the prob	olem and	prove the	hat the a	lgorithn	n solves	the prob	lem corre	ctly.	
CO3	Analyze t									s efficie	nt, and k	now by	
CO4		d design t								gorithms.			
CO5	Examine a recursion,	and formu divide-ar	late the b	oasic tec er, dynai	hniques mic prog	for desigrammin	gning al	gorithm reedy.	s and ap	plying th	ne techniq	ues of	
		Mappi	ng of C	Course	outco	mes v	vith P	rograi	n out	omes			
KCS	503 : 1	Design	and A	nalysi	is of A	lgori	thm						
	Program outcomes(PO)												
CO	Prograi	m outcon	ies(PO)										
СО	Program	m outcon	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1				PO4 3	PO5 2	<b>PO6</b>	<b>PO7</b>	PO8	PO9	PO10	<b>PO11</b>	PO12	
	PO1	PO2	PO3			188 - 188 - 188	355 35533	PO8	PO9 -	PO10 -	PO11		
CO1	PO1 3	PO2	<b>PO3</b>	3	2	1	1	PO8	PO9	PO10 -	1	3	
CO2	PO1 3	<b>PO2</b> 3	PO3 3	3	2	1	1	PO8	PO9	PO10 - -	1	3	
CO1	PO1  3  3  3	3 3 3	PO3 3 2	3 3 2	2 2 3	1 1	1 1 1	PO8	PO9	PO10 - -	1 1	3 3 2	



1

1

2.6

1

2.6

2.8

2.8

3

Average

3



**DEPARTMENT OF INFORMATION TECHNOLOGY** 

### COURSE OUTCOME (2022-2023)

### B. Tech III (Semester V)

### KCS 054: Object Oriented Programming

CO	Cour	rse Outo	comes										
COI	Student	s are able	e to Unde	erstand	the app	lication	develo	pment a	and ana	lyze the	insights	of	
CO1	object o	oriented p	rogramn	ning to	implem	ent app	lication						
CO2		s are able		rstand,	analyze	and ap	ply the	role of	overall	modelir	ng conce	pts (i.e.	
CO2		, structur											
CO3		s are able	e to unde	rstand,	analyze	and ap	ply oop	s conce	epts (1.e	. abstrac	ction,		
	inherita	ince)	•				1 .	1'	1 .	1	·· · · · · · · · · · · · · · · · · · ·		
CO ₄		Students are able to learn concepts of C++ for understanding the implementation of object oriented concepts											
		Students are able to understand the object oriented approach to implement real world											
CO ₅	2-17/200	Students are able to understand the object oriented approach to implement real world problem.											
	problei				-								
		Mapp	ing of (	Course	e outco	omes v	vith P	rograi	n outc	comes			
			KCS 0	54. 0	hiect (	Orien	ted Pr	rograi	mmin	σ			
		,	IXCS U	J4. O	ojeci (	Orien	ttu I i	ogra		5			
	Program outcomes(PO)												
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
									1				
CO ₁	3	2	3	3	2	2	2	-	-	-	2	2	
COA	2	2	3	3	2	2	2				2	2	
CO2	3	2	3	3	2	2		_					
002	_	_	2	2	2	2	2			1044	2	2	
CO ₃	3	2	3	3	2		2	-	-	_	2		
	3	_	2	2	2	2	2			100	2	2	
001	1 4	2	3	3	2			-		-			
CO4	3												
	3	2	3	3	2	2	2	-	-	-	2	2	
CO4			3	3	2	2	2	-	-	-	2	2	







**DEPARTMENT OF INFORMATION TECHNOLOGY** 

#### **COURSE OUTCOME (2022-2023)**

### B. Tech III (Semester VI)

KIT 501: Web Technology

Course Outcomes
Apply the knowledge of the internet and related internet concepts that are vital in understanding web applicationdevelopment
Understand, analyze, and apply the role of markup languages like HTML, DHTML, and XML in the workings of theweb and its applications.
Use web application development software tools i.e. XML, Apache Tomcat etc. and identifies the environmentscurrently available on the market to design web sites.
Understand, analyze, and build dynamic web pages using client-side programming JavaScript and develop the webapplication using servlet and JSP.
Understand the impact of web designing by database connectivity with JDBC

#### Mapping of Course outcomes with Program outcomes

### KIT 501: Web Technology

66	Program	m outcom	nes(PO)				u.					
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	1	3	3	-2	1	-	2	2	1	3
CO2	2	3	2	1	3	1	-	-	3	2	3	2
CO3	2	3	2	2	3	2	1	-	2	2	3	2
CO4	3	3	3	3	3	2	2	-	2	2	3	2
CO5	3	3	2	3	3	1	-	-	2	1	1	3
Average	2.6	3	2	2.4	3	1.6	1.3	-	2.2	1.8	2.2	2.4





**DEPARTMENT OF INFORMATION TECHNOLOGY** 

### COURSE OUTCOME (2022-2023)

### B. Tech IV (Semester VII)

KCS 056: Application of Soft Computing

CO	Course Outcomes
CO1	Students are able to identify and describe soft computing techniques and their roles in building intelligent machines and understand the concepts of neural networks to achieve human like decision making.
CO2	Students are able to apply neural networks to pattern classification and regression problems.
CO3	Students understand and learn fuzzy logic concepts and reasoning to handle uncertainty.
CO4	Students are able to apply the fuzzy logic concepts to solve engineering problems related to uncertainty.
CO5	

### Mapping of Course outcomes with Program outcomes

### KCS 056: Application of Soft Computing

	Program	n outcom	es(PO)									
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	1	2	2	-	(-	ě	-	-	-	2
CO2	3	3	2	3	3	2	-	=1	-	-	-	2
CO3	3	2	2	2	2	-	-	-	-	-	-	2
CO4	3	3	3	3	3	3	-	2	-	-	-	2
CO5	3	3	3	3	3	2	-	2	-	-8	-	2
Average	3	3	2	3	3	2	-	2	-	-	=	2



Average

### R.D. ENGINEERING COLLEGE, GHAZIABAD

**DEPARTMENT OF INFORMATION TECHNOLOGY** 

### COURSE OUTCOME (2022-2023)

### B. Tech III (Semester V)

### KNC 501: Constitution of India

CO	Co	urse Ou	itcomes				.,					
CO1	Identify a	nd explor	e the basi	c feature	es and m	odalitie	s about	Indian c	onstituti	on.		
CO2	Differentia	ate and rel	late the fu	inctionir	ng of Ind	lian parl	iamenta	ry syster	n at the	center as	nd state le	vel.
CO3	Differentia	ate differe	nt aspects	s of Indi	an Lega	l System	and its	related	bodies.			
CO4	Discover	and apply	differen	t laws aı	nd regula	ations re	lated to	enginee	ring pra	ctices.		
CO5	Correlate	role of en	gineers w	ith diffe	erent org	ganizatio	ns and g	governar	nce mod	els		
		Mappi	ing of C	Course	outco	mes v	vith P	rograr	n outc	omes		
KNO	C 501 : (	Constit	ution (	of Ind	ia							
	Progra	m outcom	nes(PO)									
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	-	-	-	-	-	-	-	_	-	-	-	-
CO2	7-	-	-	2	2	-	3	3	-	•	2	3
CO3	(I=	-	-	2	2	-	3	3	-	-	2	3
CO4	-	-	-	2	2	-	3	3	-	-	2	3
CO5	-	-	-	2	2	-	3	3	-	-	2	3
		1										





**DEPARTMENT OF INFORMATION TECHNOLOGY** 

### COURSE OUTCOME (2022-2023)

B. Tech III (Semester V)

KCS 551: DBMS Lab

CO	Course Outcomes
CO1	Students can explain the features of relational database and SQL.
CO ₂	Students can design ER Model for a database for a given real timeapplication.
CO3	with constraints and keys using SQL.
CO4	Students can apply data manipulation language to query, update andmanage the database.
CO5	Students will understand the concepts of database security and integrity.
	as the fearth of

### Mapping of Course outcomes with Program outcomes

### KCS551: DBMS Lab

66	Program	m outcom	ies(PO)									
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	2	(4	2	3	-	2	2	2
CO2	3	3	3	3	3	1-	-	3	-	3	2	2
CO3	3	3	3	3	3	-	2	3	2	3	2	3
CO4	3	3	3	3	3	-	2	3	2	3	2	3
CO5	3	3	3	3	3	-	2	3	2	3	3	3
Average	3	3	3	3	2.8	-	2	3	2	2.8	2.2	2.6





**DEPARTMENT OF INFORMATION TECHNOLOGY** 

### COURSE OUTCOME (2022-2023)

B. Tech III (Semester V)

KCS 553: DAA Lab

CO	Course Outcomes
CO1	Students are able to analyze the performance of various algorithms in best case, average case and worst case. Students are able to implement various sorting, searching and graph traversal algorithms
CO2	Students develop better understanding of advanced data structures likerbtree, heaps and btrees.
CO3	Students acquire skill to identify the problem given and design the algorithm using various algorithm design techniques.
CO4	Students develop better understanding of optimization techniques like dynamic programming, backtracking and branch and bound and their classical problems.
CO5	Students understand the importance of different algorithmic paradigms by comparing the performance of different algorithms for same problemin team.
	Mapping of Course outcomes with Program outcomes

#### KCS553: DAA Lab

60	Prograi	n outcon	nes(PO)									
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	3	. =	3	2	3	3	3	3
CO2	3	3	3	3	3	-	3	2	3	3	3	3
CO3	3	3	3	3	3	-	3	2	3	3	3	3
CO4	3	3	3	3	3	2	3	2	3	3	2	2
CO5	3	3	3	3	3	2	3	2	3	3	3	3
Average	3	3	3	3	3	2	3	2	3	3	2.8	2.8





**DEPARTMENT OF INFORMATION TECHNOLOGY** 

#### **COURSE OUTCOME (2022-2023)**

### B. Tech III (Semester V)

### KIT 551: Web Technology Lab

CO	Course Outcomes
CO1	Student gets familiar with HTML and CSS web technologies fordevelopment and design of web
	pages.
CO2	Students are able to make console based applications for solving real lifeproblems using syntactical and implementation knowledge of JAVA.
CO3	Students are able to design GUI based applications for solving real life problems applying knowledge of event handling using JAVA Swingcomponent.
CO4	Students are able to make interactive GUI based applications for solvingproblems applying knowledge of Multithreading, File I/O and Exception Handling using JAVA Swing component.
CO5	Students are able to design web based applications for solving problemsapplying knowledge of advance JAVA concepts such as Servlets, JDBC, JSP and other web based technologies i.e. php

### Mapping of Course outcomes with Program outcomes

### KIT 551: Web Technology Lab

	Prograi	m outcon	nes(PO)									
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	3	-	2	-	3	2	3	3
CO2	3	3	3	3	3	2	2	-	3	-	3	3
CO3	3	3	3	3	3	-	2	-	3	-	3	3
CO4	3	3	3	3	3	•	2	-	3	_	3	3
CO5	3	3	3	3	3	-	2	-	3	ā <b>™</b> .	3	3
Average	3	3	3	3	3	-	2	85	3	2	3	3





**DEPARTMENT OF INFORMATION TECHNOLOGY** 

### **COURSE OUTCOME (2022-2023)**

### B. Tech III (Semester V)

### KCS 554: Mini Project or Internal Assessment

CO		urse Ou										
CO1	Students ac business of	perations	and admir	nistrativ	e function	ons.						
CO2	Students do	evelop ha	nds-on ex	perience stitute.	e in the	student's						
CO3	Students as	titute in p	romoting	a know	ledgeabl	le societ	y.					
CO4	Students go	et stage fo	or the futuenvironm	ire recru ental res	itment b	by the polity as an	tential e n engine	er.				
CO5	Students ac work to pe	cquire pre	sentation	and den	nonstrat	ion skill	s to effe	ctively	commur	icate the	progress	of the
		Manni	ng of C	Course	outco	mes w	ith Pr	rogran	n outc	omes		
		пирр										
KCS	S 554: M	ini Pro	oject o									
KCS CO			oject o					PO8	PO9	PO10	PO11	PO12
	Prograi	ini Pro	oject o	r Inte	rnal A	Assess	ment				PO11 2	PO12
СО	Program	ini Pro	pject o	PO4	rnal A	Assess PO6	ment		PO9	PO10		
CO1	Program PO1	PO2	poject of nes(PO) PO3 2	PO4	PO5	PO6	PO7	PO8	PO9	PO10 2	2	3
CO1	Program PO1 3 3	PO2 2 3	PO3 2 2	PO4 2 3	PO5 3 3	PO6 3	PO7	PO8 - 3	PO9 3 2	PO10 2 2	2	3



2.25

2.2

3

Average

2.6

3

3

3



2.6

2

3

3



**DEPARTMENT OF INFORMATION TECHNOLOGY** 

#### **COURSE OUTCOME (2022-2023)**

#### B. Tech III (Semester VI)

KIT 601: Data Analytics

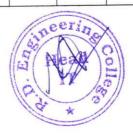
CO	Course Outcomes
CO1	Discuss various concepts of data analytics pipeline.
CO2	Apply classification and regression techniques.
CO3	Explain and apply mining techniques on streaming data
CO4	Compare different clustering and frequent pattern mining algorithms.
CO5	Describe the concept of R programming and implement analytics on Bigdata using R.
	Mapping of Course outcomes with Program outcomes

#### KIT 601: Data Analytics

СО	Program	m outcom	nes(PO)									
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	2	-	2	3	-	2	2	3
CO2	3	3	3	3	3	-	-	3	-	3	2	2
CO3	3	3	3	3	3	n <b>=</b> 1	2	2	2	3	2	2
CO4	3	3	3	3	3	-	2	3	2	3	2	2
CO5	3	3	3	3	3	-	2	3	2	3	3	3
Average	3	3	3	3	3	-	2	3	2	3	2	2






DEPARTMENT OF INFORMATION TECHNOLOGY

#### **COURSE OUTCOME (2022-2023)**

B. Tech III (Semester VI)

KCS 603: Computer Network

200		se Outc										
CO1	Understa	and the pra	actical me	eaning a	nd impo	rtance of	f 'Compi	uter Net	works'.	Familiar	with how	9 •
		sion of da	ta takes p	lace, net	twork to	pologies	signal	coding, l	Ethernet	, ISDN a	ind switch	ning
	technolo	gies.	12.0						. 1	α .	-41 M	10
CO2	Able to	grasp the s	significan	ce of err	or contr	ol and e	rror corr	ection p	rotocols	s, flow co	olso evhi	AC hit tha
	protocol	s and slidi	ng windo	w proto	cois amo	ong data	commu	nication	the meth	ks. They	doved to	accure
	understa	nding of h	now comp	outers co	mmunic	ate with	each of	ner and	me men	ious emp	noyeu to	assure
001	that the	communic	ation is r	d other	protocol	c in nets	vork lav	er for sn	nooth fu	nctionin	g and	
CO3	Apply in	ance of co	mnuter n	etwork	Also rev	eals con	fidence	to work	indeper	ndently to	setup an	d
	maintair	compute	r and nets	vorking	systems	cais con	machico	to work	macpe.		F	
CO4	Learn ho	ow the infe	ormation	is proce	ssed and	manage	ed at pro	cess to 1	process	delivery.	They can	also
CO4	demonst	rate attitu	des that a	re benef	icial to 1	naintain	ing the	security	of a con	nputer/ne	etwork sy	stem
	and assis	sting neon	le to use	that syst	em or no	etwork t	hrough o	cryptogr	aphy an	d firewal	ls.	
CO5	Manage	to skilled	with the	working	and pra	ctical kr	owledg	e of E-m	nail, FTI	P, Telnet	, POP, DI	VS etc.
000	on publi	c and priv	ate netwo	orks.	. =							
		Mapp	ing of (	Course	outco	mes v	vith P	rograr	n outc	omes		
			K	CS 60	3: C	ompu	ter N	etwor	k			
			K	CS 60	3: C	ompu	ter N	etwor	k			
CO	Program	n outcom		CS 60	3: C	ompu	ter N	etwor	k			
CO	Program	n outcom		CS 60	93: C	ompu PO6	ter N	etwor PO8	PO9	PO10	PO11	PO12
CO CO1			es(PO)							PO10	PO11	PO12
0.0 <del>20</del> 400 - 20	PO1 3	PO2	es(PO) PO3 3	PO4	PO5	PO6	PO7	PO8	PO9		PO11	
CO1	PO1	PO2	es(PO)	PO4	PO5	PO6	<b>PO7</b>	PO8	PO9	3	PO11	2
CO1	PO1 3 3	<b>PO2</b> 3 3	PO3 3 3	PO4 1 3	PO5 3 3	PO6	<b>PO7</b>	PO8	PO9	3	PO11	2
CO1	PO1 3	PO2	es(PO) PO3 3	PO4	PO5	PO6	<b>PO7</b>	PO8	PO9	3	PO11	2
CO1	PO1 3 3 2	3 3 3	es(PO) PO3 3 3	PO4 1 3	PO5 3 3	PO6  1	<b>PO7</b>	PO8	PO9	3 2	PO11	2
CO1 CO2 CO3	PO1 3 3	<b>PO2</b> 3 3	PO3 3 3	PO4 1 3	PO5 3 3	PO6	PO7 1 -	PO8	PO9	3	-	2 2 3
CO1 CO2 CO3	PO1 3 3 2	3 3 3	es(PO) PO3 3 3	PO4 1 3	PO5 3 3	PO6  1	PO7 1 -	PO8	PO9	3 3 2	-	2 2 3





DEPARTMENT OF INFORMATION TECHNOLOGY

#### **COURSE OUTCOME (2022-2023)**

#### B. Tech III (Semester VI)

KCS 601: Software Engineering

CO	Cour	se Outc	omes									
CO1	Explain	various sc	ftware ch	aracteri	stics and	l analyze	differen	nt softw	are Deve	elopment	Models.	
CO2	Assuran	trate the c	es to ensu	re that d	lesign, d	evelopm	ent mee	quality t or exce	eed appl	icable st	andards.	
CO3	Compare	e and cont	rast vario	us meth	ods for s	software	design					,
CO4	Formula develop	te testing ment and	strategy f functiona	or softw testing.	are syst	ems, em	ploy tec	hniques	such as	unit testi	ing, Test o	driven
CO5	Manage Various	software software	developm managem	ent proc	ess inde for dev	ependent elopmer	ly as we nt, maint	ell as in tenance	eams an	d make l ysis.	use of	
		Mapp	ing of C							omes		
			K	CS 60	1: Sof	tware	Engi	neerii	ıg			
	Program	n outcom	es(PO)									
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	1	-	-	-	-	-	-	-	-
CO2	2	2	3	3	3	-	-	-	-	-	-	
CO3	2	2	3	3	3	-	_	-	2	2	2	2
CO4	2	2	2	2	2	\ <u>-</u>	-	1	3	2	1	1
CO5	2	2	3	1	2	-	<b>=</b> :	-	2	2	2	1
Average	2	2	3	2	2	-	-	1	2	2	2	1



#### **DEPARTMENT OF INFORMATION TECHNOLOGY**

#### **COURSE OUTCOME (2022-2023)**

#### B. Tech III (Semester VI)

KCS 061: Big Data

CO	Cour	se Outc	omes									
CO1	Demons	strate kno	wledge	of Big I	Data An	alytics	concep	ts and it	s appli	cations i	n busine	SS
CO2	Demons	strate fu	inctions a	and com	ponent	s of MA	P & RI	EDUCE	Frame	work an	d HDFS.	1
CO3	Discuss	Data Ma	nageme	nt conce	epts in l	No SQL	enviro	nment				
CO4	Explain	process	of develo	oping N	Iap Red	luce bas	ed distr	ributed	process	ing appl	ications	
CO5	Explain	process	of develo	oping ap	plication	ons usir	ng HBA	SE, Hi	ve, Pig	etc.		
		Mapp	ing of (			omes v 61: Bi			n outc	comes		
	Program	n outcom	es(PO)			-		-				
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2		2	-	3	3	3	3	2	2	3	3
CO2	3	-	3	-	3	3	3	3	3	2	3	2
CO3	3	-	3	-	3	3	3	3	3	3	3	3
CO4	3	-	1	-	1	2	3	3	3	-	-	-
CO5	3	-	3	-	3	3	3	3	3	3	3	3
Average	3		3	100	3	3	3	3	3	3	3	3





**DEPARTMENT OF INFORMATION TECHNOLOGY** 

#### **COURSE OUTCOME (2022-2023)**

#### B. Tech III (Semester VI)

#### **KOE 068: Software Project Management**

CO		se Outc										
CO1	Identify	the pro	ject obje	ectives	and the	ir plan	ning, a	long w	ith ana	lyze va	rious cos	st/effort
CO1		on Mode				*						
CO2	Organiz	e & sche	dule pro	ject acti	vities to	comp	ute criti	cal path	for ris	k analys	is.	
CO3		and con										
CO4		ate testing		ves and	test pl	an to er	isure go	ood soft	ware q	uality m	anageme	ent with
CO5	Configu	ire chang	es and m	nanage i	isks us	ing proj	ect mar	nageme	nt adva	nced too	ols.	
			ing of C					-				
CO	Progran	n outcom	es(PO)									
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	3	3	3	3	2	2	3	3	-	2
CO2	3	3	3	3	3	3	3	2	3	2	-	3
CO3	3	3	3	3	3	3	3	3	3	3	_	3
CO4	3	1	1	2	3	3	3	-	3	-	2	2
CO5	3	3	3	3	3	3	3	3	3	3	-	3
Average	2.8	2.4	2.6	2.8	3	3	2.8	2.5	3	2.75	2	2.6



#### DEPARTMENT OF INFORMATION TECHNOLOGY

#### **COURSE OUTCOME (2022-2023)**

#### B. Tech III (Semester VI)

#### KNC 602: Indian Tradition, Culture and Society

CO	Cour	se Outc	omes									
CO1	Challenge	& state tho erary issues es by diggin	faced by	Indians a to our pa	nd try to	formulate	e& const	ruct poss	ible solu	tions to th	iese	
CO2	The stude	ents are abl	e to identi	fy & insp	ect the in	g social e	evils.					
CO3	to apply t	ents are able he same in	the socio-	technolo	gical dev	elopment	ts in pres	ent scena	irio.			
CO4	described	ents will be in ancient inological	literatures	that are	importan societal d	t to desig	gn &deve s.	lop susta	inability	in moder	n society v	vitti
CO5	The stude	ents are ablew and basice, architect	e to relate	& assess es of You	Indian K a and ho	Inowledg	ge System Ith care s	system to	illustrate	e, devise,	manage, th	ne
		Mapp	ing of (	Course	outco	mes v	vith P	rograr	n outc	omes		
		IZNI	602.	India	n Tra	dition	. Cult	ure a	nd So	ciety		
		KNO	002;	Illula		uition	,					
	Program	n outcom		muia								
СО	Program			PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO CO1		n outcom	es(PO)								PO11	
120 220		n outcom	es(PO)			PO6		PO8			PO11	2
CO1		n outcom	es(PO)		PO5	PO6 2	PO7	PO8 2			PO11 2	2
CO1		PO2	PO3	PO4 -	PO5	PO6 2 2	PO7	PO8 2 -			-	2 2
CO1 CO2 CO3		PO2 2	PO3	PO4 -	PO5	PO6 2 2 2	PO7 2	PO8 2 -	PO9		2	2 2 2 2 2





#### **DEPARTMENT OF INFORMATION TECHNOLOGY**

#### COURSE OUTCOME (2022-2023)

#### B. Tech III (Semester V)

KIT 651: Data Analytics Lab

CO	Course Outcomes
CO1	Implement numerical and statistical analysis on various data sources
CO2	Apply data pre-processing and dimensionality reduction methods on raw data
CO3	Implement linear regression technique on numeric data for prediction
CO4	Execute clustering and association rule mining algorithms on different datasets
CO5	Implement and evaluate the performance of KNN algorithm on different datasets

#### Mapping of Course outcomes with Program outcomes

#### KIT 651: Data Analytics Lab

CO	Program	m outcom	nes(PO)									
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	1	3	3	2	-	2	2	3
CO2	3	3	3	3	2	3	3	2	2	2	2	3
CO3	3	3	3	3	-	3	3	2	-	2	2	3
CO4	3	3	3	3	-	3	3	2	2	2	2	3
CO5	3	3	3	3	3	3	3	2	2	2	2	3
Average	3	3	3	3	2	3	3	2	2	2	2	3





**DEPARTMENT OF INFORMATION TECHNOLOGY** 

#### COURSE OUTCOME (2022-2023)

#### B. Tech III (Semester VI)

#### KCS 653: Computer Network Lab

CO	Co	urse Ou	tcomes									
CO1	Students	are able	e to und	lerstand	and s	imulate	variou	is netw	orktopo	ologies i	using CIS	SCO
	packet tr	STORY OF THE STORY										
CO2	Students other net devices. I	work acce Jse comm	ss equipr ands toes	nent (lik stablish	ce switch	hes and ivity am	buses) s ong ther	ubseque n.	ntly con	nected v	vith end	
CO3	Students OSPF) u	are able sing CIS	to under CO pack	stand a	nd impl r.	ement i	network	layerp	rotocol	s (like D	HCP, R	IP,
CO4	Students JAVA/C	are able	to resolv	e IP ado	dress to	host na	me and	host na	ameto I	P addres	ss using	
CO5	Students JAVA/C.		to imple	ment a	TCP bas	sed Clier	nt-Serve	r Systen	n forone	sided co	ommunica	ition in
		Mappi	ng of C	Course	outco	mes w	ith Pi	rogran	n outc	omes		
KCS	653: C	omput	er Net	work	Lab			40,000				
CO	Prograi	n outcom	es(PO)	5								
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	DO11	
CO1					6		107	100	10)	1010	PO11	PO12
COI	2	2	2	2	2	2	2	-	2	-	·	PO12
CO2	2	2	2	2	2			-		-	-	
						2	2	-	2	-		2
CO2	2	2	2	2	2	2	2	-	2	-		2
CO2	2	3	3	2	2	2 2 3	2 2 2	-	2 2 3	-		2







CO₅

Average

#### R.D. ENGINEERING COLLEGE, GHAZIABAD

**DEPARTMENT OF INFORMATION TECHNOLOGY** 

#### COURSE OUTCOME (2022-2023)

#### B. Tech III (Semester VI)

#### KCS 651: Software Engineering Lab

			XCS U.	J1. 50	111141	CLIIE	,1110011	<u></u>	•~			
CO	Co	urse Ou	itcomes									
CO1	Identify an	nbiguities	, inconsis	tencies	and inco	mpleten	ess from	a requi	rements	specific	ation and	state
	functional	and non-f	functional	require	ment.							
CO2	Identify di associate u	fferent active cases v	tors and uwith diffe	ise cases rent type	s from a es of rel	given prationship	roblem s p	tatemen	t and dra	aw use ca	ase diagra	m to
CO3	Draw a cla	ss diagrai	m after id	entifyin	g classe	s and ass	sociation	among	them			
CO4	Graphicall sequence of	y represer	nt various es underg	UML d	liagrams a system	, and ass , and rep	sociation present the	s among hem pict	them a torially			ical
CO5	Able to us	e modern	engineer	ing tools	s for spe	cificatio	n, design	n, implei	mentatio	on and te	sting	
	Program	ftware		eerin	g Lab	)						
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	1	-	-	120	-	-	-	-	<u>a</u>
CO2	2	2	3	3	3	-	-	-	-	-	-	-
CO3	2	2	3	3	3	-	-	-	2	2	2	2
CO4	2	2	2	2	2	-	-	1	3	2	1	1

R.D. Engineering College Duhai, Ghaziabad





CO₅

Average

#### **R.D. ENGINEERING COLLEGE, GHAZIABAD**

**DEPARTMENT OF INFORMATION TECHNOLOGY** 

#### **COURSE OUTCOME (2022-2023)**

#### B. Tech IV (Semester VII)

#### KHU 701: Rural Development

CO		urse Ou										
CO1	Students a											
CO2	Students veconomy & of India to Areas.	design &	e to identi & formula	fy & insate susta	spect the sinable d	importa evelopn	nce of p	oresentpolitions	olicies & of prev	program	ns of Gov	ernment
CO3	Students w	ill have a	clear idea	a about t	the area	develop	ment pro	ograms	and its in	mpact.		
CO4	Students v	entrepren	eurship a	s major	career o	ption.						
CO5	Students was able to opt	vill be abl	le to acqu	ire kno	wledge	& Skills	about	rural en	treprene	urship so	othat they	will be
		Mappi	ng of C	Course	outco	mes w	vith P	rograr	n outc	omes		
кни	J <b>701: Ru</b>	ral Dev	elopm	ent								
60	Prograi	m outcom	ies(PO)									
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	-	-	2	-	2	2	2	Ē	2	-	-	2
CO2	-	-	2	-	2	2	2		2	-	-	2
CO3	-	.=	2	-	2	2	2	-	2	-	-	2
CO4	-	-	2	_	2	2	2	-	2	-	-	2





#### **DEPARTMENT OF INFORMATION TECHNOLOGY**

#### COURSE OUTCOME (2022-2023)

#### B. Tech IV (Semester VII)

KCS 071: Artificial Intelligence

CO	Course Outcomes									
CO1	Understand the concept of artificial intelligence, intelligent agents, Computer vision, Natural Language Possessing, Uniformed and Informed search strategies, Search.									
CO2	Apply basic principles of AI in solutions that require problem solving, inference, perception, knowledge representation, and learning.									
CO3	Explain the concepts of supervised, unsupervised and reinforcement learning.									
CO4	classification techniques of pattern reorganization.									
CO5	Analyze various searching for solutions, machine learning techniques and classification techniques.									
	Mapping of Course outcomes with Program outcomes									

#### KCS 071: Artificial Intelligence

	Program	m outcom	res(PO)									
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	2	3	2	2	2	2	2	3
CO2	3	3	3	3	3	3	1	-	2	2	1	3
CO3	3	3	2	3	3	3	2	-	2	2	1	3
CO4	3	3	2	3	3	3	2	1	2	2	2	3
CO5	3	3	3	3	3	3	2	1	2	2	2	3
Average	3	3	2.6	3	2.8	3	1.8	1.3	2	2	1.6	3





DEPARTMENT OF INFORMATION TECHNOLOGY

#### COURSE OUTCOME (2022-2023)

#### B. Tech IV (Semester VII)

**KOE 073: Machine Learning** 

CO	Course Outcomes
<b>CO1</b>	To understand the need for Machine Learning for various problem solving.
CO ₂	To study the various, semi-supervised and unsupervised learning algorithms in machine learning.  To understand latest trends in machine learning.
CO ₃	To understand latest trends in machine learning.
CO ₄	To design appropriate machine learning algorithms for problem solving.
CO5	To understand the need for machine learning for various problem solving.
	Manning of Course and

#### Mapping of Course outcomes with Program outcomes

#### **KOE 073: Machine Learning**

co	Progra	PO10 PO11 PO12												
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	3	3	3	2	2	_	2	_	-	-	1	2		
CO2	3	3	3	2	2	-	2	-	_		1			
CO3	3	3	3	2	2	-	2		_	_	1	2		
CO4	3	3	3	2	2	-	2	_	_		1	2		
CO5	3	3	3	2	2	-	2	-	-	-	1	2		
Average	3	3	3	2	2	-	2	-	-	-	1	2		

Director College Colle



#### DEPARTMENT OF INFORMATION TECHNOLOGY

#### COURSE OUTCOME (2022-2023)

#### B. Tech IV (Semester VII)

#### **KCS 713: Cloud Computing**

CO	Course Outcomes
CO1	Students are able to understand and define Cloud Computing, different Cloud service and deployment
	models.
CO ₂	Students are able to understand the Cloud applications with their architecture, vulnerabilities and resource management.
	Students are able to describe importance of virtualization along with their technologies.
CO ₃	Students are able to describe importance of virtualization along with the leading students are able to describe importance of virtualization along with the leading students are able to describe importance of virtualization along with the leading students are able to describe importance of virtualization along with the leading students are able to describe importance of virtualization along with the leading students are able to describe importance of virtualization along with the leading students are able to describe importance of virtualization along with the leading students are able to describe importance of virtualization along with the leading students are able to describe importance of virtualization along with the leading students are able to describe importance of virtualization along with the leading students are able to describe along the leading students are along the leading
CO4	Students are able to analyze the components of open stack & Google Cloud platform and understand
	Mobile Cloud Computing,
CO5	Students are able to understand the design & develop backup strategies for cloud databased on features.

#### Mapping of Course outcomes with Program outcomes

#### **KCS 713: Cloud Computing**

	Program	n outcom	es(PO)							,		
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	3		3	2	-	Ē	•	3	2	2
CO2	3	2	3	-	3	2	-	-	-	3	2	2
CO3	3	2	3	-	3	2	-	-	-	3	2	2
CO4	3	2	3		3	2	-		-	3	2	2
CO5	3	2	3	-	3	2	-	-	-	3	2	2
Average	3	2	3	-	3	2	-	-	-	3	2	2





#### DEPARTMENT OF INFORMATION TECHNOLOGY

#### COURSE OUTCOME (2022-2023)

#### B. Tech IV (Semester VII)

#### KIT 751A: Departmental Elective Lab

CO	Co	urse Ou	tcomes										
CO1	Students	are able t	to perfor	m Reso	urce all	ocation	and de	adlock	detection	on and a	voidance	;	
	technique	es in the	distribute	ed syste	m.								
CO2	Students	are able t	o unders	tand rer	note pr	ocedure	call fo	r variou	ıs appli	cations.			
CO3		Students are able to understand IPC mechanism in distributed system.											
CO4	Students	Students are able to Design and build application programs on distributed systems.											
CO5	Students are able to design and build newer distributed file systems for any OS												
		Mappi	ng of C	ourse	outco	mes w	ith Pi	ogran	n outc	omes			
KIT	751A: D	epartm	ental E	Electiv	e Lab								
~~	Program outcomes(PO)												
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	3	-	3	3	3	-	-	-	-	2	2	
CO2	3	3	-	3	3	3	V.	<b>(4</b> ))	-	-	2	2	
CO3	3	3	-	3	3	3	,-	-	-	-	2	2	
CO4	3	3	-	3	3	3	-		-	-	2	2	
CO5	3	3	-	3	3	. 3	-	-	-	-	2	2	
Average	3	3	-	3	3	3	-	-	-	-	2	2	





CO₅

Average

2

2

2

2.3

#### R.D. ENGINEERING COLLEGE, GHAZIABAD

**DEPARTMENT OF INFORMATION TECHNOLOGY** 

#### **COURSE OUTCOME (2022-2023)**

#### B. Tech IV (Semester VII)

#### KIT 752: Mini Project or Internship Assessment

CO	Course Outcomes  Students acquire 'real' working environment and get acquainted with the organization											
CO1	Students a structure,	acquire 'r business	eal' work operatio	ing env	rironme adminis	nt and g strative	get acqu function	ns.	with the	e organi	zation	· ·
CO2	Students or relate and	develop h	ands-on e what h	experie	ence in to	the stud at the i	ent's re	lated fi	eld so ti	hat they	can	
CO3	Students a collabora society.	acquire k ation bety	nowledg veen ind	e of cooustry an	operation of the in	on and to	n develo	op syne loting a	rgetic knowle	edgeable	k.	
CO4	Students the social	Students get stage for the future recruitment by the potential employers and getawareness of the social, cultural, global and environmental responsibility as an engineer.										
CO5	Students theprogr	Students acquire presentation and demonstration skills to effectively communicate theprogress of the work to peers and superiors using audio/video, software tools.										
		Mappi	ng of C	Course	outco	mes v	vith P	rogran	n outc	omes		
KIT	752: Mi	ni Proj	ect or I	nterns	ship A	ssessn	ient					
	Progra	m outcon	nes(PO)									
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	-	3	3	2	-	3	3	3	3	3	3	3
CO2	-	-	2	-		3	3	3	3	3	3	2
CO3	H=	2	-	-	3	2	3	3	2	3	2	3
CO4		_	3	_	-	3	3	3	3	3	2	2



2.7

3

3

2

2

3

2

2.25



3

2

2.6

3

2.6

2

2.4

2

2.8

2.8



**DEPARTMENT OF INFORMATION TECHNOLOGY** 

#### COURSE OUTCOME (2022-2023)

#### B. Tech IV (Semester VII)

KIT 753: Project I

CO	Co	urse Ou	tcomes										
CO1	The stude	ents are a	ble to w	ork effe	ctively	in team	s to acc	complis	h a con	mon go	al.		
CO2	The stude	ents are a										geof	
CO3	The stude response									sks and	ethical		
CO4	The stud				for de	velopin	g a busi	iness pl	an for a	n entrep	oreneuria	1	
CO5	The stud	The students develop the ability of self-learning and apply it in life- long learning.											
		Mappi	ng of C	Course	outco	mes w	ith Pi	rogran	n outc	omes			
KIT	753: Pro	oject I								,			
60	Program outcomes(PO)												
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	-	-	3	3	3	2	-		3	3	3	3	
CO2	-	-	-	-	-	-	-	-	3	3	2	3	
CO3	3	3	3	3	3	2	-	3	3	3	3	3	
CO4	3	3	3	3	3	-	2	3	2	3	3	2	
CO5	3	3	3	2	3	-	2	-	3	-	2	3	
Average	3	3	3	2.7	3	2	2	3	2.8	3	2.6	2.8	







**DEPARTMENT OF INFORMATION TECHNOLOGY** 

#### **COURSE OUTCOME (2022-2023)**

#### B. Tech IV (Semester VIII)

#### KHU 802: Project Management & Entrepreneurship

CO	Co	urse Ou	tcomes										
		will be		ndersta	nd the 1	need, co	ncent.	progran	n & var	ious sch	nemes rel	ated to	
CO1		neurship.					,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	F - 6					
CO2		will be a											
СОЗ	issues d	will be uring the	implem	entatio	n ofsel	ected pr	roject.						
CO4	Students	Students will be able to understand and implement the methods & Techniques of Project Financing.											
CO5		idents will be motivated & empowered to apply the the concept of Social Entrepreneurship upliftment of the backward areas.											
		Mappi	ing of C	Course	outco	mes w	vith P	rograr	n outc	omes			
KHU	802: P	roject N	<b>I</b> anage	ment	& Ent	repre	neursl	nip					
	Program outcomes(PO)												
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1		-	2	-	2	2	2	-	2	-	-	2	
CO2		n <u>ue</u>	2	-	2	2	2	-	2	-	-	2	
CO3	-	-	2	-	2	2	2	-	2	-	-:	2	
CO4	-	-	2	-	2	2	2	-	2	-	-	2	
CO5	-	-	2	-	2	2	2	-	2	-	-	2	
Average	_	_	2	-	2	2	2	_	2	-	-	2	







#### **DEPARTMENT OF INFORMATION TECHNOLOGY**

#### COURSE OUTCOME (2022-2023)

#### B. Tech IV (Semester VIII)

**KOE 085: Quality Management** 

CO	Course Outcomes							
CO1	Develop in-depth knowledge on various quality tools & techniques of Quality Management.							
CO2	Develop an understanding on Quality Management philosophies and frameworks.							
CO3	Apply the learnt tools and techniques for controlling, improving and measuring quality in manufacturing & service industry.							
CO4	Understand and analyse proven methodologies to enhance management processes such as six sigma, benchmarking, quality circles etc.							
CO5	Choose a framework to evaluate the performance excellence of an Organisation, and determine the set of performance indicators that will algn people with objective of organisation.							
	Mapping of Course outcomes with Program outcomes							
KOL	1085. Quality Management							

#### **KOE 085: Quality Management**

CO	Program	m outcon	nes(PO)									
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	-	-	2	3	2	2	2	2	2	2	3
CO2	3	-	-	2	3	2	3	2	2	2	2	3
CO3	2	-		3	2	2	2	2	2	2	2	2
CO4	3	-	-	3	2	2	2	2	2	2	2	2
CO5	2	-	-	2	3	2	2	2	2	2	2	2
Average	2.4	-	-	2.4	2.6	2	2.2	2	2	2	2	2.4





**DEPARTMENT OF INFORMATION TECHNOLOGY** 

#### COURSE OUTCOME (2022-2023)

#### B. Tech IV (Semester VIII)

#### **KOE 093: Data Mining and Warehousing**

CO	Cour	se Outc	omes												
CO1		and the fu													
CO ₂	Apprecia	ate the str	engths an	d limitat	ions of	various	data min	ing and	data wa	rehousin	g models				
CO3		the analyz													
CO4		different													
CO5	Compare	e different	approacl	nes of da	ata ware	housing	and dat	a minin	g with v	arious te	chnologie	s.			
		Mapping of Course outcomes with Program outcomes  KOE 093 : Data Mining and Warehousing													
CO	Progran	n outcom	es(PO)												
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12			
CO1	2	-1	2	3	3	2	2	2	2	2	2	2			
CO2	3	2	2	2	3	2	<u>#</u> //	-	3	-	-	-			
CO3	3	3	3	3	3	2	3	3	2	2	-	3			
CO4	3	3	3	3	3	3	2	-	2	-	-	-			
CO5	-	2	3	2	3	2	2	3	2	-	2	3			
Average	3	3	3	3	3	2	2	3	2	2	2	3			







**DEPARTMENT OF INFORMATION TECHNOLOGY** 

#### COURSE OUTCOME (2022-2023)

#### B. Tech IV (Semester VIII)

KIT 851: Project II

CO	Co	urse Ou	tcomes											
CO1	The stud	ents are a	able to w	ork effe	ectively	in tean	is to ac	complis	sh a con	nmon go	oal.			
CO2	The stud	ents are a	able to de	evelop t	he abili	ity to co	mmuni	cate eff	ectively	y with a	wide ran	ige of		
CO3	The stud	lents acqu			_					asks and	ethical			
CO4		The students apply the knowledge for developing a business plan for an entrepreneurial venture and its implementation.												
CO5	The students develop the ability of self-learning and apply it in life- long learning.													
			ing of C											
KIT	851 : Pi	roject I	I			· ·								
CO	Program	m outcom	es(PO)											
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	-	-	3	3	3	2	-	-	3	3	3	3		
CO2			-	-	-	-	-	-	3	3	2	3		
CO3	3	3	3	3	3	2	-	3	3	3	3	3		
CO4	3	3	3	3	3	-	2	3	2	3	3	2		
CO5	3	3	3	2	3	-	2	-	3	-	2	3		
Average	3	3	3	2.7	3	2	2	3	2.8	3	2.6	2.8		





DEPARTMENT OF INFORMATION TECHNOLOGY AVERAGE OF PROGRAM OUTCOMES (2022-2023)

			Subjects With Codes					Progra	m Outc	omes	P. Fr				
S.N.	YEAR	SEMESTER	Subjects With Codes	P01	PO2	P03	P04	P05	P06	P07	P08	P09	PO10	P011	P012
			MATH (KAS 302)	2.2	2.2	2	2	2	-	1	-	-		1.33	1
		III SEMESTER	UHV (KVE 301)	2	2	2	-	2	2	1	-	-	-	1	-
	ear	8	DS (KCS 301)	3	3	2.1	2.6	1.8	1.4	1	1	1.2	1.2	1.2	2.1
	ž	Z	COA (KCS 301)	2.4	2.4	1.6	1	2	1	1	; <b>-</b> .	1	8=	1	1
	2nd	5	DST (KCS 303)	3	2.4	2.1	2.6	2.6	2	1.6	1	1	1	1	2
	2		PYTHON PROGRAMMING (KNC 302)	2.8	3	2.8	2.75	3	2.7	2.4	2	2.8	858	*	3
1	(E)	~	DE (KOE 049)	2	2	1.8	-	2	1	2	-	-	-	1	-
		IV SEMESTER	TE (KAS 401)	1.2	1.4	2.6	1.2	1.6	1.4	1.8	1.6	-	2	=	2.4
	B.Tech	ES.	WD (KIT 401)	2.4	2.4	2.8	2	2.6	3	2.6	1.4	2.4	1	1	2.6
	<u>F</u>	E E	OS (KCS 401)	2.4	2	1.2	2.2	2.6	1	1	1	1	2.6	2.2	2.6
	_	0	CSS (KNC 401)	2.2	2.6	2	2.2	2.5	3		2	-		-	3
			TAFL (KCS 402)	3	3	3	2	3	141	•		•	2	-	3
			DBMS (KCS 501)	2.8	2.6	3	3	2	1.4	1.4	1.4	2	2	2.4	2
		SEMESTER	DAA (KCS 503)	3	3	2.8	2.8	2.6	1	1	-	(2)	-	1	2.6
	ear	TS:	OOP (KCS 054)	3	2	3	3	2	2	2	-	-	-	2	2
	S	N N	WEB TECHNOLOGY (KIT 501)	2.6	3	2	2.4	3	1.6	1.3	-	2.2	1.8	2.2	2.4
	9		ASC (KCS 056)	3	3	2	3	3	2	-	2	1-1	-	-	2
	3RD	>	CONSTITUTION OF INDIA (KNC 501)	-	<u> </u>	-	2	2	-	3	3	-	-	2	3
2	E		DA (KIT 601)	3	3	3	3	3	-	2	3	2	3	2	2
		H H	COMPUTER NETWORK (KCS 603)	2.6	2.8	2.6	1.8	2.8	1.3	1	1	1.5	2.8		2.2
	B.Tech	SEMESTER	SOFTWARE ENGINEERING (KCS 601)	2	2	3	2	2	-	-	1	2	2	2	1
	F.	_ ≥	BIG DATA (KCS 061)	3	-	3	-	3	3	3	3	3	3	3	3
		8	SPM (KOE 068)	2.8	2.4	2.6	2.8,€	eria	3	2.8	2.5	3	2.75	2	2.6
		5	ITCS (KNC 602)		2	2	1/30/0	100	_ 2	2	-	-	-	2	2

		Ä	RURAL DEVLOPMENT (KHU 701)		-	2	-	2	2	2	-	2	-		2
	Yea	MES	AI (KCS 071)	3	3	2.6	3	2.8	3	1.8	1.3	2	2	1.6	3
	į l	SE	ML (KOE 073)	3	3	3	2	2	-	2	21	-	-	1	2
3	(F) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A	CC (KCS 713)	3	2	3		3	2	-	щ	-	3	2	2	
		έ	PME (KHU 802)	-	-	2	-	2	2	2		2	,	-	2
	P.	SE	QM (KOE 085)	2.4		-	2.4	2.6	2	2.2	2	2	2	2	2.4
		5	DMW (KOE 093)	3	3	3	3	3	2	2	3	2	2	2	3
	AVER	AGE		2.6	2.5	2.4	2.4	2.5	2.0	1.8	1.8	2.0	2.1	1.7	2.3

Director R.D. Engineering College Duhai, Ghaziabad dieering Collins

## SAMPLE OF COPO MAPPING

# Department of Mechanical Engineering

#### Engineering Graduates will be able to: -

- Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- **2. Problem analysis**: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- 3. Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- **4. Conduct investigations of complex problems:** Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- **5. Modern tool usage:** Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
- **6. The engineer and society:** Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- 7. Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- **8. Ethics:** Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- **9. Individual and team work:** Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- **10. Communication:** Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- **11. Project management and finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- **12. Life-long learning:** Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.
- COs to be mapped with POs in Matrix form.
- Correlation levels 1, 2, 3 as defined (1: low, 2: Moderate, 3: High).
- COs will be mapped with POs on the basis of above-mentioned levels.
- If there is no correlation, put "-" or left blank or put zero.





#### KME301: Thermodynamics

СО	CO Statement
CO1	To apply energy balance to systems and control volumes, in situations involving heat and work interactions.
CO2	To evaluate changes in thermodynamic properties of substances.
CO3	The students will be able to evaluate the performance of energy conversion devices.
CO4	To differentiate between high grade and low-grade energies.
CO5	To evaluate the changes in properties of substances in various processes.

	Mapping of Course Outcomes with Program Outcomes														
	KME301: Thermodynamics														
PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12			
co															
CO1	3	3	3	3	2	1	*)	-	-		-	2			
CO2	3	2	3	3	2	1	-		-		-	2			
CO3	3	3	2	3	2	2	-		-		-	1			
CO4	2	3	3	3	3	1	-		- 1		-	2			
CO5	3	2	3	3	2	1		-	-	-	-	2			
Average	2.8	2.6	2.8	3	2.2	1.2	-	-:		-3	-	1.8			





#### KME302: Fluid Mechanics & Fluid Machines

со	CO Statement
CO 1	To mathematically analyze simple flow situations.
CO 2	To learn about the application of mass and momentum conservation laws for fluid
	flows.
CO 3	To understand the importance of dimensional analysis.
CO 4	To obtain the velocity and pressure variations in various types of simple flows

		Ma	pping o	of Cour	se Outc	omes w	ith Pro	gram O	utcome	s		
			KME	302 : Fl	uid Med	chanics	& Fluid	Machin	es			
PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	2	1	-	-	=0	-	-	2
CO2	2	3	3	3	2	2	2	-	-	-	8	2
CO3	3	2	2	3	1	2	-	-	₩.	24	-	1
CO4	3	3	2	3	3	1	-	-	<b></b>	-	= .	1
CO5	2	3	3	3	2	1	-	-	-	-	-	2 '
Average	2.6	2.8	2.6	3	2.0	1.4	-	-	-	-	-:	1.6





#### KME303: MATERIALS ENGINEERING

со	CO Statement
CO 1	the
	defects in such structures.
CO 2	Understand how to tailor material properties of ferrous and non-ferrous alloys.
CO 3	To provide a detailed interpretation of equilibrium phase diagrams. How to quantify mechanical integrity and failure in materials.
CO 4	Learning about different phases and heat treatment methods to tailor the properties of Fe-C alloys.
CO 5	Understanding of the correlation between the internal structure of materials, their mechanical properties and various methods to quantify their mechanical integrity and failure criteria.

		Map	ping of	f Cours	e Outc	omes w	ith Pro	gram C	Outcom	es				
				ı	KME303	B: MATE	RIALS	ENGINE	ERING					
PO	PO         PO1         PO2         PO3         PO4         PO5         PO6         PO7         PO8         PO9         PO10         PO11         PO12													
co														
CO1	3	3	3	3	2	1	-	-	-	-	-	2		
CO2	3	3	3	3	2	2	-	-	-	-	-	2		
CO3	2	2	2	3	3	2		-	-	-	-	2		
CO4	3	3	2	2	3	1	21	-	-	-	-	1		
CO5	2	2	3	3	2	2	-	-	-	-	-	2		
Average	2.6	2.8	2.6	2.8	2.4	1.8	-	-	-		-	1.8		





#### KME303: MATERIALS ENGINEERING

со	CO Statement
CO 1	Student will be able to identify crystal structures for various materials and understand the defects in such structures.
CO 2	Understand how to tailor material properties of ferrous and non-ferrous alloys.
CO 3	To provide a detailed interpretation of equilibrium phase diagrams. How to quantify mechanical integrity and failure in materials.
CO 4	Learning about different phases and heat treatment methods to tailor the properties of Fe-C alloys.
CO 5	Understanding of the correlation between the internal structure of materials, their mechanical properties and various methods to quantify their mechanical integrity and failure criteria.

		Ma	pping o	of Cour	se Outc	omes w	ith Pro	gram O	utcome	es		
				KI	ME303:	MATER	IALS EN	IGINEER	ING			
PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	2	1	-	-		-	-	2
CO2	3	3	3	3	2	2	-	-	S=		-	2
CO3	2	2	2	3	3	2	-	-	( <del>-</del>		-	2
CO4	3	3	2	2	3	1	-	-	K=	-	-	1
CO5	2	2	3	3	2	2	-	-	A.=	-	-	2
Average	2.6	2.8	2.6	2.8	2.4	1.8	-	-	χ <b>=</b> 			1.8





#### KME351: FLUID MECHANICS LAB

со	CO Statement
<b>CO</b> 1	To measure various properties of fluids and characterize the performance of
	fluid/thermal machinery.
CO 2	To understand the principles and performance characteristics of flow and thermal
	devices
CO 3	To know about the measurement of the fluid properties.

		Ma	pping o	f Cours	e Outc	omes w	ith Pro	gram O	utcom	es		
				KME35	1: FLUI	D MEC	HANICS	LAB				
PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO CO1	3	3	3	2	3	1		-	-	-	-	1
CO2	3	2	3	2	2	2		-	74	-	-8	1
CO3	3	3	3	3	3	1	-	-	-		-	2
Average	3	2.6	3	2.3	2.6	1.2	-	-	-	-	-	1.2





#### KAS302: MATHS IV

со	CO Statement
CO1	Remember the concept of partial differential equation and to solve partial differential equations
CO2	Analyze the concept of partial differential equations to evaluate the problems concerned with partial differential equations.
CO3	Understand the concept of correlation, moments, skewness and curve fitting
CO4	Remember the concept of probability to evaluate probability distributions
CO5	Apply the concept of hypothesis testing and statistical quality control to create control charts

		Ma	pping o	f Cours	e Outc	omes w	ith Pro	gram (	Outcom	es		
					KAS302	2: MATH	HS IV					
PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	2	-	2	-	-	-	-	-	-	1
CO2	3	3	2	2	-	-	-	-	+	ā	-	1
CO3	2	2	2	2	*	-	-	-	-	-	1	1
CO4	2	2	+	2	2	*	-	-	-	-	1	1
CO5	2	2	-		2	-	1	-	=	-	2	1
Average	2.2	2.2	2	2	2	-	1	-	-	• 1	1.33	1





#### **KVE 301: Universal Human Value**

CO	Course Outcomes
CO1	Understand the significance of value inputs in a classroom, distinguish between values and skills, understand the need, basic guidelines, content of value education, explore the meaning of happiness and prosperity and do a correct appraisal of the current scenario in the society
CO2	Distinguish between the Self and the Body, understand the meaning of Harmony in the Self the Co-existence of Self and Body.
CO3	Understand the value of harmonious relationship based on trust, respect and other naturally acceptable feelings in human-human relationships and explore their role in ensuring a harmonious society.
CO4	Understand the harmony in nature and existence, and work out their mutually fulfilling participation in the nature.
CO5	Distinguish between ethical and unethical practices, and start working out the strategy to actualize a harmonious environment wherever they work.

		Марр	ing of C	Course	outco	mes w	ith Pr	ogram	outco	omes		
				KVE 301	L: Unive	ersal Hu	ıman V	alue				
PO		Program outcomes(PO)										
CO	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12											
CO1	9.	=	-	-	2	1	1	1	3	~-	1	-
CO2	-	-	-	-	-	1	-	1	3	-		-
CO3	-	-	-	-	-	1	1	1	3	-	1	-
CO4	ê	8	.=	- 1	-	1	-	1	3	-	1	-
CO5	-	*:	-	-	2	1	-	1	3	-	-	- 1
Average	-	-		-	2	1	1	1	3	•	1	-





#### KME354: :- Mini Project or Internship Assessment

СО	CO Statement
CO1	Be acquainted with appropriate utility. To inculcate the habit of observing social problems and searching for a possible sustainable eco friendly solution.
CO2	Apply fundamental principles of science and engineering to design and fabricate models for diversified applications.
CO3	To enhance team spirit and improve the ability of students to work together for solution of common engineering problem. To improve ability of students for the selection of material and manufacturing process and approach for solving an engineering problem with minimum cost.

		M	apping	of Cour	se Outc	omes w	ith Pro	gram O	utcome	s		
		К	ME354	::- Min	i Proje	ct or In	ternshi	p Asses	sment	- 1 - 2		
PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	n <b>u</b>	-	-	-	-	-	•	-	-	1
CO2	2		2	2		-	-	-	2	2	-	•
CO3	2	2	2	-	-	-	-	-	2	2	-	1
Average	2	2	2	2	2	2	2	-	2	2	-	1





#### KME353: COMPUTER AIDED MACHINE DRAWING-I LAB

со	CO Statement
CO 1	To provide an overview of how computers can be utilized in mechanical component design.
CO2	The students can use computer and CAD software for modeling Mechanical components.
CO 3	The students can use computer and CAD software for assembling Mechanical
	components.

		Ma	pping o	of Cour	se Outc	omes w	ith Pro	gram O	utcome	es			
		KME	353: C0	OMPUT	ER AID	ED MA	CHINE	DRAWI	NG-I LA	AB			
PO													
CO1	2	3	3	2	3	1	-	-	-	-	-	1	
CO2	2	2	2	2	2	2	-	-		-	-	2	
CO3	3	3	3	2	3	1	-	-	·	-	-	1	
Average	2.3	2.6	2.6	2.0	2.6	1.2	-	-	-	-	-	1.3	





#### **KME401: Applied Thermodynamics**

со	CO Statement
CO1	The students will get a good understanding of various practical power cycles and heat pump cycles. To learn about of I law for reacting systems and heating value of fuels.
CO2	To analyze energy conversion in various thermal devices such as combustors, air coolers, nozzles, diffusers, steam turbines and reciprocating compressors. To learn about gas and vapor cycles and their first law and second law efficiencies.
CO3	To understand phenomena occurring in high speed compressible flows. To understand about the properties of dry and wet air and the principles of psychometric.
CO4	To learn about gas dynamics of air flow and steam through nozzles
CO5	To analyze the performance of steam turbines.

		Map	ping of	Cours	e Outco	mes wi	th Prog	gram O	utcome	s		`
			K	(ME401	: Applie	d Theri	nodyna	mics				
PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	2	1	-	-	-	- 1	-	2
CO2	3	2	3	3	2	1	-	1 :-	2.7		-	2
CO3	3	3	2	3	2	2	-	1	-	-	-	1
CO4	2	3	3	3	3	1	-	-	-	-	-	2
CO5	3	2	3	3	2	1	-	-	-	-	-	2
Average	2.8	2.6	2.8	3	2.2	1.2	-	-	-		-	1.8





#### KME402: Engineering Mechanics

со	CO Statement								
CO 1	To understand the various effect of force on the engineering design structures								
CO 2	To understand the various effect o motion on the engineering design structures								
CO 3	To understand Centroid and moment of inertia.								
CO 4	To understand about SFD and BMD.								
CO 5	To understand Simple stress and strain, Pure bending of beams and torsion								

		Ma	apping o	of Cour	se Outc	omes w	ith Pro	gram O	utcome	es		
				KME40	02: Eng	ineering	g Mecha	anics				
PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	2	1	-	-	-	-	3=	2
CO2	3	3	3	3	2	1	-	-	-	-	± <del>1</del>	2
CO3	3	3	3	3	2	1	-	-		-	(=	2
CO4	3	3	3	3	2	1	-	-	<b>=</b> 0	-	-	2
CO5	3	3	3	3	2	1	-	-,	-	-	-	2
Average	3	3	3	3	2	1	-	-	-	-	-	2





#### **KME403: Manufacturing Processes**

со	CO Statement
CO 1	To understand the different casting methods employed for making different products
CO 2	To understand about the tool geometry, tool life and different machining operation.
CO 3	To understand the grinder and different grinding processes and super finishing.
CO 4	To understand different joining processes.
CO 5	To understand the different conventional and unconventional manufacturing methods
	employed for making different products

		Map	ping of	Cours	e Outco	mes wi	th Prog	ram O	utcome	S		
			ŀ	(ME403	: Manu	facturin	g Proce	esses				
PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
co												
CO1	3	3	3	3	2	1	-	-	-	-	-	2
CO2	3	2	3	3	2	1	-	-	-	-	-	2
CO3	3	3	2	3	2	2	-	-	8	-	-	1
CO4	2	3	3	3	3	1	-	-	-		-	2
CO5	3	2	3	3	2	1	-	-	-	-	-	2
Average	2.8	2.6	2.8	3	2.2	1.2	-	: ·	-	-	-	1.8
			L									







#### **KME451: APPLIED THERMODYNAMICS LAB**

со	CO Statement
<b>CO</b> 1	To identify various properties of system
CO 2	To understand the principles of various boilers and engines.
CO 3	To understand the performance of various boilers and engines.

		Map	ping of	f Cours	e Outc	omes w	ith Pro	gram C	utcom	es		
			KME	451: AF	PLIED .	THERM	ODYNA	MICS L	AΒ			
PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	3	3	2	3	1	-	-	-	-	-	1
CO2	3	2	3	2	2	2	741	-	-	-	-	1
CO3	3	3	3	2	3	1	-	-	-	-	-	1
Average	2.6	2.6	3	2.0	2.6	1.2	-	-	-	-	-	1





#### **KME452: MANUFACTURING PROCESS LAB**

со	CO Statement
CO 1	To understand the different conventional and unconventional manufacturing methods.
CO 2	To develop an appreciation of the processes in correlation with material properties which change the shape, size and form of the raw materials into the desirable product by conventional methods.
CO 3	To develop an appreciation of the processes in with material properties which change the shape, size and form of the raw materials into the desirable product by unconventional manufacturing methods.

		Maj	pping o	f Cours	e Outc	omes w	ith Pro	gram C	utcom	es		
			KMI	452: N	IANUFA	CTURIN	NG PRO	CESS LA	В			
PO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	3	3	2	3	1	-	-	-	-	-	1
CO2	3	3	2	2	2	2	-	-	-	-	-	1
CO3	3	3	3	2	3	1	-	-		:=	æ	1
Average	2.6	3	2.6	2.0	2.6	1.2	-	-		-	•	1





#### KME453: COMPUTER AIDED MACHINE DRAWING-II LAB

со	CO Statement
CO 1	To provide an overview of how computers can be utilized in mechanical component design.
CO 2	The students can use computer and CAD software for modeling Mechanical components.
CO 3	The students can use computer and CAD software for assembling Mechanical components

		Ma	pping o	f Cours	se Outc	omes w	ith Pro	gram O	utcome	es		
		KME	453: CO	MPUT	ER AID	ED MA	CHINE	DRAWI	NG-II L	АВ		
PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	2	3	1	-	1-	-	-	-	1
CO2	3	2	3	3	2	2	-	-	-	-	-	2
CO3	3	3	3	2	3	1	-	-	-	-	Ę	1
Average	3	2.6	3	2.3	2.6	1.2	-	-	-	-	-	1.3





**KOE043**: Energy Science & Engineering

со	CO Statement
	To know about different Energy and its Usage
CO 2	To know about Nuclear Energy and its Usage
CO 3	To know about Solar Energy and its Usage
CO 4	
CO 5	To know about Systems and Synthesis and its Usage

		Ma	pping o	f Cour	se Outc	omes w	ith Prog	gram O	utcome	S		
				KOE043	: Ener	gy Scier	ice & Ei	ngineeri	ng			
PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	2	1	æ		21	-	-	2
CO2	3	3	3	3	2	1	4	-	-	-	-	2
CO3	3	3	3	3	2	1	-	-	-	5 <del>.1.</del>	En .	2
CO4	3	3	3	3	2	1	-	-	-	- <del>-</del>		2
CO5	3	3	3	3	2	1	-	-	-	-	-	2
Average	3	3	3	3	2	1		•	-	-	-	2 '





#### **KAS401: Technical Communication**

со	CO Statement
CO 1	Students will be enabled to understand the nature and objective of Technical
	Communication relevant for the work place as Engineers.
CO 2	Students will utilize the technical writing for the purposes of Technical Communication
	and its exposure in various dimensions.
CO 3	Students would imbibe inputs by presentation skills to enhance confidence in face of
	diverse audience.
CO 4	Technical communication skills will create a vast know-how of the application of the
	learning to promote their technical competence.
CO 5	It would enable them to evaluate their efficacy as fluent & efficient communicators by
	learning the voice-dynamics.

		Ma	pping o	f Cours	e Outc	omes w	ith Prog	gram O	utcome	es		
			3	KAS401	: Techn	ical Con	nmunic	ation		211		
PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	2	3	1	2	1	2	2	21	2	-	2
CO2	1	2	3	1	2	2	2	1	-	2	.=	2
CO3	1	1	2	1	1	2	2	2	-	2	-	3
CO4	2	1	3	2	1	1	2	1	-	2	-	3
CO5	1	1	2	1	2	1	1	2	-	2	-	2
Average	1.2	1.4	2.6	1.2	1.6	1.4	1.8	1.6	-	2	-2	2.4







COURSE OUTCOME (2022-23)

#### KME501: Heat and Mass Transfer

со	CO Statement
CO1	Understand the fundamentals of heat and mass transfer.
CO2	Apply the concept of steady and transient heat conduction.
CO3	Apply the concept of thermal behavior of fins.
CO4	Apply the concept of forced and free convection.
CO5	Apply the concept of radiation for black and non-black bodies. Conduct thermal
	analysis of heat exchangers

PO1		ı	(ME501	: Heat	and N	lace T					
DO1						1055 1	ranste	Г			
FOI	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
3	3	3	3	2	1	-	-	-	-	-	2
3	2	3	3	2	1	-	-	=	-	-	2
3	3	2	3	2	2	-	-	-	-	-	1
2	3	3	3	3	1	-	-	-	-	-	2
3	2	3	3	2	1	-	-	-	-	-	2
2.8	2.6	2.8	3	2.2	1.2	-	-	-	-		1.8
	3 2 3	3 2 3 3 2 3 3 2	3 2 3 3 3 2 2 3 3 3 2 3	3     2     3     3       3     3     2     3       2     3     3     3       3     2     3     3       3     2     3     3	3     2     3     3     2       3     3     2     3     2       2     3     3     3     3       3     2     3     3     3       3     2     3     3     2	3     2     3     3     2     1       3     3     2     3     2     2       2     3     3     3     3     1       3     2     3     3     2     1	3     2     3     3     2     1     -       3     3     2     3     2     2     -       2     3     3     3     1     -       3     2     3     3     2     1     -	3     2     3     3     2     1     -     -       3     3     2     3     2     2     -     -       2     3     3     3     1     -     -       3     2     3     3     2     1     -     -	3     2     3     3     2     1     -     -     -       3     3     2     3     2     2     -     -     -       2     3     3     3     1     -     -     -       3     2     3     3     2     1     -     -     -	3     2     3     3     2     1     -     -     -     -       3     3     2     3     2     2     -     -     -     -       2     3     3     3     1     -     -     -     -       3     2     3     3     2     1     -     -     -	3     2     3     3     2     1     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -





**COURSE OUTCOME (2022-23)** 

#### KME502: Strength of Material

со	CO Statement
CO1	Understand the concept of stress and strain under different conditions of loading
CO2	Determine the principal stresses and strains in structural members
CO3	Determine the stresses and strains in the members subjected to axial, bending and
CO4	Apply the concepts of stresses and strain in solving problems related to springs,
	torsional loads column and pressure vessels
CO5	Calculate the slope, deflection and buckling of loaded members . Analyze the stresses
	developed in straight and curved beams of different cross sections

		Ma	apping o	of Cours	se Outc	omes wi	ith Prog	gram O	itcome	S		
				KME	02: Str	ength	of Ma	terial				
PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	2	1	-	-	-	-	-	2
CO2	3	3	3	3	2	2	-	-	-8	-	-	2
CO3	2	2	2	3	3	2	-	-	-	9	-	2
CO4	3	3	2	2	3	1	2-	-	-	-	-	1
CO5	2	2	3	3	2	2	-	-	;=:	-	-	2
Average	2.6	2.8	2.6	2.8	2.4	1.8	-	-	-	-	-	1.8





**COURSE OUTCOME (2022-23)** 

#### KME503: Industrial Engineering

со	CO Statement
CO1	Understand the concept of production system, productivity, facility and process
	planning in various industries
CO2	Apply the various forecasting and project management techniques
CO3	Apply the concept of break-even analysis, inventory control and resource utilization
	using queuing theory
CO4	Apply principles of work study and ergonomics for design of work systems
CO5	Formulate mathematical models for optimal solution of industrial problems using
	linear programming approach

		Ma	pping o	of Cours	se Outco	omes w	ith Prog	gram Oı	utcome	S		
				KME50	3: Indu	ıstrial	Engin	eering				
PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	2	1	-	-	-	-	-	2
CO2	2	3	3	3	2	2	-	-	( <del>-</del>	-	-	2
CO3	3	2	2	3	1	2	-	-	. =	-	-	1
CO4	3	3	2	3	3	1	7-1	;-	-	-	-	1
CO5	2	3	3	3	2	1	-	-	80		-	2
Average	2.6	2.8	2.6	3	2.0	1.4	,-	-	-	-	-	1.6





COURSE OUTCOME (2022-23)

KME551: Heat and Mass Transfer Lab

со	CO Statement
CO1	Apply the concept of conductive heat transfer.
CO2	Apply empirical correlations for both forced and free convection to determine the
	value of convection heat transfer coefficient
CO3	Apply the concept of radiation heat transfer for black and grey body.
CO4	Analyze the thermal behaviour of parallel or counter flow heat exchangers.
CO5	Conduct thermal analysis of a heat pipe

		Ma	pping o	f Cours	e Outc	omes w	ith Pro	gram C	utcom	es		
			KME5	51: He	eat an	d Mas	s Tran	sfer L	.ab			
PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	3	3	2	3	1	-	-	-	-	-	1
CO2	2	2	2	2	2	2	-	¥	-	7 <del>2</del> 7	-	2
CO3	3	3	3	2	3	1	-	-	-		-	1
Average	2.3	2.6	2.6	2.0	2.6	1.2	-	-	-	-	-	1.3







COURSE OUTCOME (2022-23)

KME552: Python Lab

со	CO Statement
CO1	Apply conditional statement, loops condition and functions in python program.
CO2	Solve mathematical and mechanical problems using python program.
CO3	Plot various type of chart using python program. Analyze the mechanical problem using
	python program.

		Ma	pping o	f Cours	e Outc	omes w	ith Pro	gram C	utcom	es		
KME552: Python Lab												
PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	3	3	2	3	1	-	-	12	82	·-	1
CO2	2	2	2	2	2	2	-	-	-	:=-	X	2
CO3	3	3	3	2	3	1	-	-	-	-		1
Average	2.3	2.6	2.6	2.0	2.6	1.2	-		-	-	-	1.3





COURSE OUTCOME (2022-23)

#### KME553: Internet of Things Lab

со	CO Statement
CO1	Understand Internet of Things and its hardware and software components.
CO2	Interface I/O devices, sensors & communication modules. Design prototype of IoT based smart system.
CO3	Remotely monitor data and control devices. Develop IoT based projects for real life problem.

		Ma	pping o	f Cours	e Outc	omes w	ith Pro	gram C	utcom	es		
			К	ME553:	Intern	net of	Thing	s Lab				
PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	3	3	2	3	1	-	-	-	X-	-	1
CO2	3	2	3	2	2	2	-	-	-		-	1
CO3	3	3	3	2	3	1	-	-	-	-	-	1
Average	2.6	2.6	3	2.0	2.6	1.2	-	. <del>.</del>	-	-	-	1





COURSE OUTCOME (2022-23)

#### KME554: :- Mini Project or Internship Assessment

со	CO Statement
CO1	Be acquainted with appropriate utility. To inculcate the habit of observing social problems
	and searching for a possible sustainable eco friendly solution.
CO2	Apply fundamental principles of science and engineering to design and fabricate models for
	diversified applications.
CO3	To enhance team spirit and improve the ability of students to work together for solution of
COS	common engineering problem. To improve ability of students for the selection of material and
	manufacturing process and approach for solving an engineering problem with minimum cost.

		Ma	pping o	f Cours	se Outc	omes w	ith Pro	gram C	utcom	es		
		KI	ME554:	:- Mini	Projec	t or In	ternshi	p Asses	ssment			
PO	PO1	PO2						PO8		PO10	PO11	PO12
CO	2	2				-	-	_	-	_	-	1
CO1	2	2	-									
CO2	2	-	2	2	-	-	) <del>-</del>	i-	2	2	-	
CO3	2	2	2	N-	-	-	-	-	2	2	-	1
Average	2	2	2	2	2	2	2	•	2	2	-	1





COURSE OUTCOME (2022-23)

#### KME 054: I C Engine, Fuel and Lubrication

СО	CO Statement
CO 1	Explain the working principle, performance parameters and testing of IC Engine.
CO 2	Understand the combustion phenomena in SI and CI engines and factors influencing
	compustion chamber design.
CO 3	Understand the essential systems of IC engine and latest trends and developments
	in IC Engines.
CO 4	Understand the effect of engine emissions on environment and human health and
	methods of reducing it.
CO 5	Apply the concepts of thermodynamics to air standard cycle in IC Engines . Analyze the
	effect of various operating parameters on IC engine performance.

			<b>KME</b>	054: I (	C Engi	ne, Fu	el and	l Lubri	cation	l		
PO	PO1	PO2	PO3	PO4	PO5			PO8	PO9	PO10	PO11	PO12
CO CO1	. 3	3	3	3	2	1	-	-	-	-	-	2
CO2	3	3	3	3	2	2	-	-	-	-	-	2
CO3	2	2	2	3	3	2	-	-	#	-	-	2
CO4	3	3	2	2	3	1	-	-	-	-		1
CO5	2	2	3	3	2	2	-	-	-	-	-	2
Average	2.6	2.8	2.6	2.8	2.4	1.8	-		-	-	-	1.8





COURSE OUTCOME (2022-23)

#### KME 055: Advance welding

со	CO Statement
CO 1	Understand the physics of arc welding process and various operating characteristics of
CO 2	Analyse various welding processes and their applications.
CO 3	Apply the knowledge of welding for repair & maintenance, along with the weldability of different materials.
CO 4	Apply the concept of quality control and testing of weldments in industrial environment.
CO 5	Evaluate heat flow in welding and physical metallurgy of weldments

	Ma	apping o	of Cours	se Outc	omes w	ith Prog	gram Oi	itcomes	8		
			KME	E 055:	Advan	ce we	lding				
PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
3	3	3	3	2	1	-	-		-	3.5	2
2	3	3	3	2	2	-	-	-	-	(=	2
3	2	2	3	1	2	-	-	-	-	-	1
3	3	2	3	3	1	-		-	-	-	1
2	3	3	3	2	1	-	-	8	-	-	2
2.6	2.8	2.6	3	2.0	1.4	-	-	-	-	-	1.6
֡֡֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜	3 2 3 3 2	PO1 PO2  3 3 2 3 3 2 3 3 2 3	PO1 PO2 PO3  3 3 3 2 3 3 3 2 2 3 3 2 2 3 3 3	KMI       PO1     PO2     PO3     PO4       3     3     3     3       2     3     3     3       3     2     2     3       3     2     2     3       3     3     2     3       2     3     3     3       2     3     3     3	KME 055:       PO1     PO2     PO3     PO4     PO5       3     3     3     2       2     3     3     2       3     2     2     3     1       3     3     2     3     3       2     3     3     2       3     3     2     3     3       2     3     3     2	KME 055: Advantage       PO1     PO2     PO3     PO4     PO5     PO6       3     3     3     2     1       2     3     3     2     2       3     2     2     3     1     2       3     3     2     3     1     2       3     3     2     3     3     1       2     3     3     2     1	KME 055: Advance we         PO1       PO2       PO3       PO4       PO5       PO6       PO7         3       3       3       2       1       -         2       3       3       2       2       -         3       2       2       3       1       2       -         3       3       2       3       1       -       -         3       3       2       3       3       1       -         2       3       3       2       1       -	KME 055: Advance welding         PO1       PO2       PO3       PO4       PO5       PO6       PO7       PO8         3       3       3       2       1       -       -       -         2       3       3       2       2       -       -         3       2       2       3       1       2       -       -         3       3       2       3       1       -       -       -         2       3       3       2       1       -       -       -         2       3       3       2       1       -       -       -	KME 055: Advance welding         PO1       PO2       PO3       PO4       PO5       PO6       PO7       PO8       PO9         3       3       3       2       1       -       -       -       -         2       3       3       2       2       -       -       -       -         3       2       2       3       1       2       -       -       -         3       3       2       3       3       1       -       -       -         3       3       3       2       1       -       -       -         2       3       3       2       1       -       -       -	PO1         PO2         PO3         PO4         PO5         PO6         PO7         PO8         PO9         PO10           3         3         3         2         1         -         -         -         -           2         3         3         2         2         -         -         -         -           3         2         2         3         1         2         -         -         -         -           3         3         2         3         3         1         -         -         -         -           2         3         3         2         1         -         -         -         -	KME 055: Advance welding           PO1         PO2         PO3         PO4         PO5         PO6         PO7         PO8         PO9         PO10         PO11           3         3         3         2         1         -         -         -         -         -           2         3         3         2         2         -         -         -         -         -           3         2         2         3         1         2         -         -         -         -         -           3         3         2         3         1         -         -         -         -         -           3         3         2         1         -         -         -         -         -           3         3         2         1         -         -         -         -         -           2         3         3         2         1         -         -         -         -         -





COURSE OUTCOME (2022-23)

#### KME 601: Refrigeration & Air Conditioning

СО	CO Statement
CO1	Understand the basics concepts of Refrigeration & Air-Conditioning and its future prospects.
CO2	Explain the construction and working of various components in Refrigeration &
	Air-Conditioning systems.
CO3	Understand the different types of RAC systems with their respective applications.
CO4	Apply the basic laws to the thermodynamic analysis of different processes Involved in
	Refrigeration and Air-Conditioning.
CO5	Apply the basic concepts to calculate the COP and other performance parameters for
	different RAC systems .

		Ma	pping o	f Cours	e Outco	omes w	ith Prog	gram O	utcome	s		
			KME 6	601: R	efriger	ation	& Air (	Condit	ioning	3		
PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO CO1	3	3	3	3	2	1	-	-	( <b>m</b> .	-	-	2
CO2	3	3	3	3	2	2	-	-	-		-	2
CO3	2	2	2	3	3	2	- 1	-	-	-	-	2
CO4	3	3	2	2	3	1	1-	-	-	41	-	1
CO5	2	2	3	3	2	2	-	-	y,=	-	-	2
Average	2.6	2.8	2.6	2.8	2.4	1.8	-	-	1-	-	-	1.8
	1											





**COURSE OUTCOME (2022-23)** 

KME602: Machine Design

со	CO Statement
CO 1	Recall the basic concepts of Solid Mechanics to understand the subject.
CO 2	Classify various machine elements based on their functions and applications.
CO 3	Apply the principles of solid mechanics to machine elements subjected to static and
	fluctuating loads.
CO 4	Analyze forces, bending moments, twisting moments and failure causes in various
	machine elements to be designed.
CO 5	Design the machine elements to meet the required specification.

	Ma	apping o	of Cours	se Outc	omes w	ith Prog	gram O	ıtcome:	S		
			KM	E602: I	Vlachir	ne Des	ign				
PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
3	3	3	3	2	1	-	-		1-	-	2
2	3	3	3	2	2	-	-	-	-	-	2
3	2	2	3	1	2	-	-	-	-	-	1
127.	3	2	3	3	1	-	-	-	8=	-	1
0.50	3	3	3	2	1	-	-	-	9-	-	2
2.6	2.8	2.6	3	2.0	1.4	ı. <del>-</del>	-	-	-	-	1.6
	3 2 3 3 2	PO1 PO2  3 3 2 3 3 2 3 3 2 3	PO1 PO2 PO3  3 3 3 2 3 3 3 2 2 3 3 2 2 3 3	PO1 PO2 PO3 PO4  3 3 3 3 3  2 3 3 3  3 2 2 3  3 3 2 3  2 3 3 3	PO1 PO2 PO3 PO4 PO5  3 3 3 3 2  2 3 3 3 2  3 2 2 3 1  3 3 2 3 3  2 3 3 2	PO1 PO2 PO3 PO4 PO5 PO6  3 3 3 3 3 2 1  2 3 3 3 2 2  3 2 2 3 1 2  3 3 2 3 3 1  2 3 3 3 2 1	KME602: Machine Des         PO1       PO2       PO3       PO4       PO5       PO6       PO7         3       3       3       2       1       -         2       3       3       2       2       -         3       2       2       3       1       2       -         3       3       2       3       1       -       -         3       3       2       3       3       1       -         2       3       3       2       1       -	KME602: Machine Design         PO1       PO2       PO3       PO4       PO5       PO6       PO7       PO8         3       3       3       2       1       -       -         2       3       3       2       2       -       -         3       2       2       3       1       2       -       -         3       3       2       3       1       -       -       -         2       3       3       2       1       -       -       -         2       3       3       2       1       -       -       -	KME602: Machine Design         PO1       PO2       PO3       PO4       PO5       PO6       PO7       PO8       PO9         3       3       3       2       1       -       -       -         2       3       3       2       2       -       -       -         3       2       2       3       1       2       -       -       -         3       3       2       3       3       1       -       -       -         3       3       3       2       1       -       -       -         2       3       3       2       1       -       -       -	PO1         PO2         PO3         PO4         PO5         PO6         PO7         PO8         PO9         PO10           3         3         3         2         1         -         -         -         -           2         3         3         2         2         -         -         -         -           3         2         2         3         1         2         -         -         -         -           3         3         2         3         3         1         -         -         -         -           2         3         3         2         1         -         -         -         -	KME602: Machine Design         PO1       PO2       PO3       PO4       PO5       PO6       PO7       PO8       PO9       PO10       PO11         3       3       3       2       1       -       -       -       -       -         2       3       3       2       2       -       -       -       -       -         3       2       2       3       1       2       -       -       -       -       -         3       3       2       3       3       1       -       -       -       -       -         3       3       2       3       3       1       -       -       -       -       -         3       3       3       2       1       -       -       -       -       -         3       3       3       2       1       -       -       -       -       -         2       3       3       2       1       -       -       -       -       -       -         3       3       2       1       -       -       -       -





COURSE OUTCOME (2022-23)

#### KME603: Theory of Machines

СО	CO Statement
CO1	Understand the principles of kinematics and dynamics of machines.
	Calculate the velocity and acceleration for 4-bar and slider crank mechanism.
CO2	Calculate the velocity and acceleration of the various types of motions.
CO3	Develop cam profile for followers executing various types of motions.
CO4	Apply the concept of gear, gear train and flywheel for power transmission.
CO5	to the same analysis for slider crank mechanism and balance rotating w
000	signs eating masses in machines. Apply the concepts of gyroscope, governors in
	fluctuation of load and brake &dynamometer in power transmission.

				KME	603: Th	eory o	f Macl	nines				
PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
co		-	1 2	3	2	1	-	-	-	-	-	2
CO1	3	3	3			-		_		-	-	2
CO2	3	2	3	3	2	1	-	_	1451	-		1
CO3	3	3	2	3	2	2	-	-	-			-
		3	3	3	3	1	-	-	-	.=	-	2
CO4	2	3				1	-	-	_	-	-	2
CO5	3	2	3	3	2	1		-		-		1.8
Average	2.8	2.6	2.8	3	2.2	1.2	-	-	-	-	-	1.0





COURSE OUTCOME (2022-23)

#### KME651: Refrigeration & Air Conditioning Lab

со	CO Statement
CO1	Determine the performance of different refrigeration and air-conditioning systems
CO2	Apply the concept of psychrometry on different air cooling systems.
CO3	Interpret the use of different components, control systems and tools used in
	RAC systems Demonstrate the working of practical applications of RAC systems.

		Ma	pping o	f Cours	e Outc	omes w	ith Pro	gram O	utcom	es		
		KIV	1E651: F	Refrige	eration	n & Ai	r Cond	litionii	ng Lal	b		
PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	2	1	-	-	-	-	-	2
CO2	3	3	3	3	2	1	-	3	-	-	-	2
CO3	3	3	3	3	2	1	1	-	-	-	-	2
Average	3	3	3	3	2	1	-	-	-	-	-	2





COURSE OUTCOME (2022-23)

#### KME652: Machine Design Lab

со	CO Statement
CO1	Apply the principles of solid mechanics to design various machine Elements subjected to static and fluctuating loads.
CO2	Write computer programs and validate it for the design of different machine elements
CO3	Evaluate designed machine elements to check their safety.

		Ma	pping o	f Cours	e Outc	omes w	ith Pro	gram O	utcom	es		
				KME652	: Mac	hine D	esign)	Lab				
PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	2	3	1		-	-	-	-	1
CO2	3	2	3	2	2	2	-	-	-	-	-	1
CO3	3	3	3	3	3	1	-	-	-		-	2
Average	3	2.6	3	2.3	2.6	1.2	-	-	-	-	•	1.2





COURSE OUTCOME (2022-23)

KME653: Theory of Machines Lab

СО	CO Statement
CO1	Demonstrate various mechanisms, their inversions and brake and clutches in
٠٠.	Automobiles. Apply the concept of governors to control the fuel supply in engine.
CO2	Apply cam-follower mechanism to get desired motion of follower.
CO3	Apply the concents of gears and gear train to get desired velocity ratio for power
000	transmission. Determine the balancing load in static and dynamic balancing problem.

		Ma	pping o							es		
			ΚN	1E653:	Theor	y of M	achine	es Lab	)			
PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	3	3	2	3	1	-	-		-		1
CO2	3	2	3	2	2	2	-	-	-	-	120	1
CO3	3	3	3	2	3	1	-	-	-	-	-	1
Average	2.6	2.6	3	2.0	2.6	1.2	-	-	-	-	-	1





COURSE OUTCOME (2022-23)

**KOE068: SOFTWARE PROJECT MANAGEMENT** 

со	CO Statement
CO 1	Identify project planning objectives, along with various cost/effort estimation models
CO 2	Organize & schedule project activities to compute critical path for risk analysis.
CO 3	Monitor and control project activities.
CO 4	Formulate testing objectives and test plan to ensure good software quality under SEI-CMM.
CO 5	Configure changes and manage risks using project management tools.

		Ma	apping o	of Cours	se Outc	omes w	ith Prog	gram Oi	itcomes	8		
			KOE068	: SOFT	WARE P	ROJECT	MANAG	EMENT				
PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	2	1	-	-	7=	1-1	-	2
CO2	2	3	3	3	2	2	-	-	-	-	-	2
CO3	3	2	2	3	1	2	-	-	-	-	-	1
CO4	3	3	2	3	3	1	-	-	-	-	-	1
CO5	2	3	3	3	2	1	1	-	-	-	-	2
Average	2.6	2.8	2.6	3	2.0	1.4	-	-	•	-	-	1.6





COURSE OUTCOME (2022-23)

#### **KME061: Nondestructive Testing**

со	CO Statement
CO1	Understand the concept of destructive and Non-destructive testing methods.
CO 2	Explain the working principle and application of die penetrant test and magnetic particle inspection
CO3	Understand the working principle of eddy current inspection.
CO 4	Apply radiographic techniques for testing.
CO 5	Apply the principle of Ultrasonic testing and applications in medical and engineering
	areas.

		Ma	pping o	f Cours	e Outc	omes w	ith Pro	gram O	utcome	es		
				KME061	L: None	destru	ctive :	Testing	g			
\ PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
co												
CO1	3	3	3	3	2	1	-	-	74		:=:	2
CO2	3	3	3	3	2	2	-	-	1-	<del></del>	-	2
CO3	2	2	2	3	3	2	-	-	-	-	-	2
CO4	3	3	2	2	3	1	-	1-	=	-	-	1
CO5	2	2	3	3	2	2	-	\ <u>-</u>	-	-	-	2
Average	2.6	2.8	2.6	2.8	2.4	1.8	-	-	-	-	. <del>.</del>	1.8





COURSE OUTCOME (2022-23)

KME071: Additive manufacturing

со	CO Statement
	Understanding the basics of additive manufacturing/rapid prototyping and its advantages
CO1	disadvantages
CO2	Understanding the role of additive manufacturing in the design process and the implications
	for design.
CO3	Understanding the processes used in additive manufacturing for a range of materials and applications.
004	Understand the various software tools, processes and techniques that enable
CO4	advanced/additive manufacturing and personal fabrication.
CO5	Apply knowledge of additive manufacturing for various real-life applications.

		Maj	pping of	f Cours	e Outc	omes w	ith Pro	gram C	utcom	es		
			K	ME07	1: Add	litive m	anufac	turing				
<b>PO</b>	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
co	,				_	1						2
CO1	3	3	3	3	2	1				- XX-		2
CO2	3	3	3	3	2	1		-	-	-	-	
CO3	2	2	2	2	2	1	-	-	-	-	-	2
CO4	3	3	2	3	2	1	-	: <del>=</del> :	-	-	-	2
CO5	2	3	3	3	2	1	1-1	-	(#)	-	-	2
Average	2.8	2.8	2.6	2.8	2	1	1	-	-	-	-	2





**COURSE OUTCOME (2022-23)** 

#### **KME076: Power Plant Engineering**

со	CO Statement
CO1	Understand the different sources of power generation and their impact on environment.
CO2	Understand the elements of power generation using conventional and non-conventional
	energy sources.
CO3	Understand the elements of power generation using conventional and non-conventional
	energy sources.
CO4	Apply the basic concepts of thermodynamics to measure the performance of different
	power plants.
CO ₅	Determine the performance of power plants based on load variations.

		Ma	pping of	f Cours	e Outc	omes w	ith Pro	gram C	utcom	es		
			KM	E076:	Powe	r Plan	t Engi	neerir	ıg			
PO	PO1	PO2	PO3	PO4		PO6			PO9	PO10	PO11	PO12
CO1	3	3	3	3	2	1	-	-	:=	-	-	2
CO2	3	3	3	3	2	1	-	-	-	-	-	2
CO3	3	3	3	3	2	1	-	-	The second	-	-	2
CO4	3	3	3	3	2	1	-	-	-	-	-	2
CO5	3	3	3	3	2	1	-	-	-	-	-	2
Average	3	3	3	3	2	1	-	-	-	-	n=	2





COURSE OUTCOME (2022-23)

#### **KOE074: RENEWABLE ENERGY RESOURCES**

со	CO Statement
CO1	Understand the concept of solar cell, material etc.
CO2	Understand the concept of solar thermal energy, solar thermal power plant etc.
CO3	Understand the concept of geothermal and MHD.
CO4	Understand the concept of thermoelectric and thermionic conversion, wind energy
	concept etc.
CO5	Understand the concept of tidal power plant, OTEC, biomass conversion etc.

		Ma	pping o	f Cours	se Outc	omes w	ith Pro	gram O	utcome	es		
			KOE0	74: REN	IEWAB	LE ENE	RGY RE	SOURC	CES			
PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	2	1	-	-		-	-	2
CO2	2	3	3	3	2	2	-	-	-	-	-	2
CO3	3	2	2	3	1	2	-	-	-	-	-	1
CO4	3	3	2	3	3	1	-	-	•	- 1	-	1
CO5	2	3	3	3	2	1	-	-	-	-	-0	2
Average	2.6	2.8	2.6	3	2.0	1.4	-	-	-	-11	-	1.6





COURSE OUTCOME (2022-23)

KME751: Measurement & Metrology Lab

со	CO Statement
CO1	Understand the basic principles of instrumentation for measurement of surface finish,
	strain, temperature, pressure and flow.
CO2	Understand the principle and operation of Coordinate Measuring Machine (CMM).
CO3	Apply Sine Bar, Slip Gauges, Bevel Protractor, Stroboscope, Dial Indicator etc. for measurement of different attributes. Apply the basic concepts of limits, fits & tolerances for selective assembly.

	Ma	pping o	f Cours	e Outc	omes w	ith Pro	gram O	utcom	es		
		KMF	2751: 1	Measur	ement	& Met	rology l	Lab			
PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
2	3	3	2	3	1	-	-	n <del>-</del>	-	-	1
2	2	2	2	2	2	-	-	-	-	-	2
3	3	3	2	3	1	-	-	-	-	-	1
2.3	2.6	2.6	2.0	2.6	1.2	-	-	-	-	-	1.3
	2 2 3	PO1 PO2  2 3 2 2 3 3	PO1 PO2 PO3  2 3 3  2 2 2  3 3 3	FO1 PO2 PO3 PO4  2 3 3 2  2 2 2 2  3 3 2	KME751: Measur       PO1     PO2     PO3     PO4     PO5       2     3     3     2     3       2     2     2     2     2       3     3     2     3       3     3     2     3	KME751: Measurement         PO1       PO2       PO3       PO4       PO5       PO6         2       3       3       2       3       1         2       2       2       2       2       2         3       3       3       2       3       1	KME751: Measurement & Met         PO1       PO2       PO3       PO4       PO5       PO6       PO7         2       3       3       2       3       1       -         2       2       2       2       2       -         3       3       2       3       1       -	KME751: Measurement & Metrology I         PO1       PO2       PO3       PO4       PO5       PO6       PO7       PO8         2       3       3       2       3       1       -       -         2       2       2       2       2       -       -         3       3       3       2       3       1       -       -	KME751: Measurement & Metrology Lab         PO1       PO2       PO3       PO4       PO5       PO6       PO7       PO8       PO9         2       3       3       2       3       1       -       -       -         2       2       2       2       2       -       -       -         3       3       3       2       3       1       -       -       -	PO1         PO2         PO3         PO4         PO5         PO6         PO7         PO8         PO9         PO10           2         3         3         2         3         1         -         -         -         -           2         2         2         2         2         -         -         -         -           3         3         3         2         3         1         -         -         -         -	KME751: Measurement & Metrology Lab         PO1       PO2       PO3       PO4       PO5       PO6       PO7       PO8       PO9       PO10       PO11         2       3       3       2       3       1       -       -       -       -       -         2       2       2       2       2       -       -       -       -       -         3       3       3       2       3       1       -       -       -       -       -





**COURSE OUTCOME (2022-23)** 

#### KHU 702: PROJECT MANAGEMENT & ENTREPRENEURSHIP

со	CO Statement
CO1	Understand the basics concepts of Entrepreneurship.
CO2	Understand the basics concepts of Entrepreneurial Idea and Innovation.
CO3	Understand the basics concepts of Project Management.
CO4	Understand the basics concepts of Project Financing.
CO5	Understand the basics concepts of Social Entrepreneurship.

		-	pping of										
	KHU 702: PROJECT MANAGEMENT & ENTREPRENEURSHIP												
PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	3	3	3	2	1	-	-	-	-	-	2	
CO2	3	2	3	3	2	1	-	-	-	-	-	2	
CO3	3	3	2	3	2	2	-	-	-	-	-	1	
CO4	2	3	3	3	3	1	-	-	(=	-		2	
CO5	3	2	3	3	2	1	-	-	-	-	-	2	
Average	2.8	2.6	2.8	3	2.2	1.2	-	-	-	-	•	1.8	





**COURSE OUTCOME (2022-23)** 

KME752: :- Mini Project or Internship Assessment

со	CO Statement
CO1	Be acquainted with appropriate utility. To inculcate the habit of observing social problems and
	Searching for a possible sustainable eco friendly solution.
CO2	Apply fundamental principles of science and engineering to design and fabricate models for
	diversified applications.
CO3	To enhance team spirit and improve the ability of students to work together for solution of
000	common engineering problem. To improve ability of students for the selection of material and
	manufacturing process and approach for solving an engineering problem with minimum cost.

			oping of									
		KN	/IE752:	:- Mini	Projec	t or Int	ernsni	p Asse	ssmen	τ		
PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	-	-	-	-	-	-	:=	-	-	1
CO2	2	-	2	2	-	:-	:=	-	2	2	-	
CO3	2	2	2	-	-	s=	-	-	2	2	-	1
Average	2	2	2	2	2	2	2	-	2	2	-	1





COURSE OUTCOME (2022-23)

KME753: :- Project

со	CO Statement
CO1	Identify real world problems of mechanical engineering and related systems
CO2	Interpret the working of mechanical engineering systems.
CO3	Apply the principles of mechanical engineering in real world systems.

		Maj	pping of	Cours	e Outco	omes w	ith Pro	gram O	utcom	es		
					KME75							
PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	2	2	-	-	2	2	2	2	-	
CO2	2	2	2	2	-	-	2	2	2	2	-	1
CO3	2	2	2	2	-	-	2	2	2	2	-	1
Average	2	2	2	2	2	2	2	-	2	2	-	1





COURSE OUTCOME (2022-23)

#### KHU801: RURAL DEVELOPMENT: ADMINISTRATION AND PLANNING

со	CO Statement
CO1	Students can understand the definitions, concepts and components of Rural Development
CO2	Students will know the importance, structure, significance, resources of Indian rural economy.
соз	Students will have a clear idea about the area development programmes and its impact.
CO4	Students will be able to acquire knowledge about rural entrepreneurship.
CO5	Students will be able to understand about the using of different methods for human resource planning

		Ma	pping o	f Cours	e Outc	omes w	ith Pro	gram O	utcom	es		
		KHU80	1: RURA	L DEVEL	OPMEN	T: ADMI	NISTRAT	ION ANI	D PLANI	NING		
PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	2	1	-	-	-	-	-	2
CO2	2	3	3	3	2	2	-	1 18	-	-		2
CO3	3	2	2	3	1	2		-	)e	-	:-	1
CO4	3	3	2	3	3	1	-	-	-	-	-	1
CO5	2	3	3	3	2	1	-	-	:#I	-	-	2
Average	2.6	2.8	2.6	3	2.0	1.4	-	-	/ <del>-</del>	-	-	1.6





**COURSE OUTCOME (2022-23)** 

#### **KOE085: QUALITY MANAGEMENT**

со	CO Statement
CO1	Students can understand the definitions, concepts and components of Quality Concepts
CO2	Students can understand the definitions, concepts and components of Quality  Management
CO3	Students can understand the definitions, concepts and components of Control Charts
CO4	Students can understand the definitions, concepts and components of reliability
CO5	Students can understand the definitions, concepts and components of Taguchi method, JIT in some details.

		Map	ping of	Cours	e Outco	omes w	ith Pro	gram C	utcom	es		
			К	DE085:	QUAL	ITY MA	NAGE	MENT				
PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO CO1	3	3	3	3	2	1	-	-	-	-	-	2
CO2	3	3	3	3	2	2	-	-	-	-	-	2
CO3	2	2	2	3	3	2	-	-	-	-	-	2
CO4	3	3	2	2	3	1	-	-	-	-	7	1
CO5	2	2	3	3	2	2	-	-	-	-	×=	2
Average	2.6	2.8	2.6	2.8	2.4	1.8		-	-	*	-	1.8





**COURSE OUTCOME (2022-23)** 

#### KOE091: Automation and robotics

со	CO Statement
CO1	Students can understand the definitions, concepts and components of Automation.
CO2	Students can understand the definitions, concepts and components of Manufacturing Automation.
CO3	Students can understand the definitions, concepts and components of Robotics.
CO4	Students can understand the definitions, concepts and components of Robot Drives and Power Transmission Systems.
CO5	Students can understand the definitions, concepts and components of Robot Simulation.

		Map	ping of	Course	e Outco	mes w	ith Pro	gram C	utcom	es		
			КОЕ	091: A	utoma	ation a	and ro	botics	6			
PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	2	1	-	-	-	-	9	2
CO2	2	3	3	3	2	2	-	-	-	-	-	2
CO3	3	2	2	3	1	2	-	1-	-	177	-	1
CO4	3	3	2	3	3	1		-	*	-		1
CO5	2	3	3	3	2	1	-	-	-	-	-	2
Average	2.6	2.8	2.6	3	2.0	1.4	-	-	2-	-	<b>=</b> :	1.6

Head ME &



COURSE OUTCOME (2022-23)

#### KME851: - Project

со	CO Statement
GO1	Identify real world problems of mechanical engineering and related systems.
CO1	Interpret the working of mechanical engineering systems.
	Interpret the working of mechanical engineering systems,
CO ₃	Apply the principles of mechanical engineering in real world systems.

	Maj	pping of	Course	Outco	mes wi	ith Prog	gram O	utcome	es		
PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
2	2	3	2	3	1	-	-	-	-	-	1
		4	2	2	2	-	-	-	-	-	2
	3	3	2	3	1	-	-	-	-	-	1
2.3	2.6	2.6	2.0	2.6	1.2	-	-	(#	-	-	1.3
	2 2 3	PO1 PO2  2 3 2 2 3 3	PO1 PO2 PO3  2 3 3  2 2 2  3 3 3	PO1 PO2 PO3 PO4  2 3 3 2  2 2 2 2  3 3 3 2	PO1 PO2 PO3 PO4 PO5  2 3 3 2 3  2 2 2 2 2 2  3 3 3 2 3	PO1 PO2 PO3 PO4 PO5 PO6  2 3 3 2 3 1  2 2 2 2 2 2 2  3 3 3 2 3 1	KME851: :- Project         PO1       PO2       PO3       PO4       PO5       PO6       PO7         2       3       3       2       3       1       -         2       2       2       2       2       -         3       3       2       3       1       -	KME851: :- Project         PO1       PO2       PO3       PO4       PO5       PO6       PO7       PO8         2       3       3       2       3       1       -       -         2       2       2       2       2       -       -       -         3       3       3       2       3       1       -       -	KME851: :- Project         PO1       PO2       PO3       PO4       PO5       PO6       PO7       PO8       PO9         2       3       3       2       3       1       -       -       -         2       2       2       2       2       -       -       -         3       3       3       2       3       1       -       -       -         3       2       3       1       -       -       -       -	PO1         PO2         PO3         PO4         PO5         PO6         PO7         PO8         PO9         PO10           2         3         3         2         3         1         -         -         -         -         -           2         2         2         2         2         -         -         -         -         -           3         3         3         2         3         1         -         -         -         -	KME851: :- Project         PO1       PO2       PO3       PO4       PO5       PO6       PO7       PO8       PO9       PO10       PO11         2       3       3       2       3       1       -       -       -       -       -         2       2       2       2       2       -       -       -       -       -         3       3       3       2       3       1       -       -       -       -       -





#### R.D. ENGINEERING COLLEGE, GHAZIABAD

DEPARTMENT OF MECHANICAL ENGINEERING AVERAGE OF PROGRAM OUTCOMES (2022-2023)

S.N.	YEAR	SEMESTER	Subjects/Labs With Codes					Progra	m Outco	mes							
-	2			P01	PO2	PO3	PO4	P05	P06	P07	P08	P09	PO10	PO11	P012		
- 1		ES	KME301: Thermodynamics	2.8	2.6	2.8	3	2.2	1.2	-				-	1.8		
- 1	2nd	Ξ	KME302: Fluid Mechanics & Fluid Machines	2.6	2.8	2.6	3	2	1.4	-					1.6		
- 1		SE	KME303: MATERIALS ENGINEERING	2.6	2.8	2.6	2.8	2.4	1.8	-					1.8		
	(ME)	=	KAS302: MATHS IV KVE301: Universal Human Values	2.2	2.2		2 2	2	-	1				1.33	-		
1	Σ -			•	-	-	- 3	2	1	1	1	3	-	1.55	1		
~ [		ES	KME401: Applied Thermodynamics	2.8	2.6	2.8	3	2.2	1.2				-	-	1.8		
- 1	-	SEME	SEM	Σ	KME402: Engineering Mechanics	3	3	3	3	2	1	1				-	-
- 1	ě			KME403: Manufacturing Processes	2.8	2.6	2.8	3	2.2	1.2				-		2	
- 1		ž	KOE043: Energy Science & Engineering	3	3	3	3	2	1						1.8		
$\rightarrow$	-		KAS401: Technical Communication	1.2	1.4	2.6	1.2	1.6	1.4	1.8	1.6	+-	2		2.4		
- 1	15	3RD Y	KME501: Heat and Mass Transfer	2.8	2.6	2.8	3	2.2	1.2				-				
	₽∣		KME502: Strength of Material	2.6	2.8	2.6	2.8	2.4	1.8			-	-		1.8		
- 1	3		KME503: Industrial Engineering	2.6	2.8	2.6	3	2.4	1.4	-		-	-	•	1.8		
- 1	€ I	S	KME 054:1 C Engine, Fuel and Lubrication	2.6	2.8	2.6	2.8	2.4					-	•	1.6		
2	ME)	>	KME 055: Advance welding	2.6	2.8	2.6	3	2.4	1.8		-	-	-		1.8		
- 1	_	S	KME 601: Refrigeration & Air Conditioning	2.6	2.8	2.6	2.8	_	1.4	-	-	-	-	-	1.6		
	등	¥	KME602: Machine Design	2.6	2.8	2.6	3	2.4	1.8	-		-	-	•	1.8		
	9	SEI	KME603: Theory of Machines	2.8	2.6	2.8		2	1.4		-	-	-	•	1.6		
	-		_	KOE068: SOFTWARE PROJECT MANAGEMENT	2.6	2.8	2.6	3	2.2	1.2	-		-	-	-	1.8	
	Δ	5	KME061: Nondestructive Testing	2.6	2.8	2.6	2.8	2.4	1.4		-	-	-		1.6		
	4th	EST	KME071: Additive manufacturing	2.8	2.8	2.6	2.8	2.4	1.8	-		-	-	-	1.8		
	9	SEMI	KME076: Power Plant Engineering	3	3	3	3	2	1				274				
3	(ME)	<u> </u>	KOE074: RENEWABLE ENERGY RESOURCES	2.6	2.8	2.6	3	2	1.4			-	-		2		
٦	ج ا ج			KHU 702: PROJECT MANAGEMENT & ENTREPRENEURSHIP	2.8	2.6	2.8	3	2.2	1.2			-			1.6	
	9	S	KHU801: RURAL DEVELOPMENT: ADMINISTRATION AND	2.6	2.8	2.6	3	2	1.4	-			-		1.8		
- 1	5	5	KOE085: QUALITY MANAGEMENT	2.6	2.8	2.6	2.8	2.4	1.8	-	-	-	-	-	1.6		
_	<u>m</u>		KOE091: Automation and robotics	2.6	2.8	2.6	3	2	1.4			-	-		1.8		
	AVER	AGE		2.630769	2.7	2.66923077	2.838462			1.266667	1.3	3	2	1.165	1.6		



DEPART	R.D. ENGINEER IMENT OF ELECTRONION TAKEN ON IDENTIFIE	ING COLLEGE, GHAZ CS AND COMMUNICAT ED GAP OF PROGRAM	TION ENGINEERING
S.N.	Gap Identified	Relevent PO	Action Taken
1	NO GAP	-	NOT NEED
2			
3			



# SAMPLE OF CO-PO MAPPING

# Department of MBA



# DEPARTMENT OF MANAGEMENT

	Program Outcomes (Pos) For MBA(2022-23)
PO1	Apply knowledge of management theories and practices to solve business problems.
PO2	Foster analytical and critical thinking abilities for data-based decision making.
PO3	Integrate and utilize qualitative and quantitative tools and concepts to investigate and solve critical business problems.
PO4	Ability to develop Value based Leadership ability.
PO5	Ability to understand, analyze and communicate global, economic, legal, and ethical aspects of business.
PO6	Ability to lead themselves and others in the achievement of organizational goals, contributing effectively to a team environment.



Director College R.D. Engineering Duhai, Ghaziabad

# MBA 1st Year Course Structure in accordance with AICTE Model Curriculum Effective w.e.f. Academic Session 2020-21 Semester I

SN	Codes	SUBJECT		PERIO	DS	IN		L EVAL CHEME	UATION	SEM	ND ESTER UATION	TO TO STA	
			L	Т	P	CT	TA	PS	TOTAL	TE	PE	TOTAL	CREDIT
1	KMBN101	MANAGEMENT CONCEPTS & ORGANISATIONAL BEHAVIOUR	4	0	0	30	20	0	50	100	0	150	3
2	KMBN102	MANAGERIAL ECONOMICS	4	0	0	30	20	0	50	100	0	150	3
3	KMBN103	FINANCIAL ACCOUNTING & ANALYSIS	3	1	0	30	20	0	50	100	0	150	3
4	KMBN104	BUSINESS STATISTICS & ANALYTICS	3	1	0	30	20	0	50	100	0	150	3
5	KMBN105	MARKETING MANAGEMENT	4	0	0	30	20	0	50	100	0	150	3
6	KMBN106	DESIGN THINKING	2	0	0	15	10	0	25	50		75	2
7	KMBN107	BUSINESS COMMUNICATION	3	1	0	30	20	0	50	100	0	150	3
						LA	B / PR.	ACTIC	ALS				
8	KMBN151	IT SKILLS LAB-1	0	0	3	0		50	50	-	100	150	3
9	KMBN152	MINI PROJECT -1	0	0	3	0	0	25	25	0	50	75	3
												1200	26



### Semester II

SN	CODE	SUBJECT	PE	RIODS		EV	ERNAI ALUAT IEME	ION		SEV	END ESTER UATION		
			L	Т	P	CT	TA	PS	TOTA L	TE	PE	TOTAL	CREDI
1	KMBN201	BUSINESS ENVIRONMENT & LEGAL ASPECT OF BUSINESS	4	0	0	30	20	0	50	100	0	150	3
2	KMBN202	HUMAN RESOURCE MANAGEMENT	4	0	0	30	20	0	50	100	0	150	3
3	KMBN203	BUSINESS RESEARCH METHODS	4	0	0	30	20	0	50	100	0	150	3
4	KMBN204	FINANCIAL MANAGEMENT & CORPORATE FINANCE	3	1	0	30	20	0	50	100	0	150	3
5	KMBN205	OPERATIONS MANAGEMENT	3	1	0	30	20	0	50	100	0	150	3
6	KMBN206	QUANTITATIVE TECHNIQUES FOR MANAGERS	3	1	0	30	20	0	50	100	0	150	3
7	KMBN207	DIGITAL MARKETING & E COMMERCE	4	0	0	30	20	0	50	100	0	150	3
8	KMBN208	MANAGEMENT INFORMATION SYSTEMS	2	0	0	15	10	0	25	25	0	50	2
	7.					LA	B / PR	ACTICA	LS				
9	KMBN251	IT SKILLS LAB-2	0	0	2	0	0	25	25	0	25	50	1
10	KMBN252	MINI PROJECT -2	0	0	3	0	0	25	25	0	25	50	2
		Futorial/Practical CT/TA/										1200	26

L/T/P – Lecture/Tutorial/Practical, CT/TA/PS- Class Test/Teachers Assessment/Practical Session, TE/PE-Term End/ Practical End



Evaluation Criteria and Marks	Understandin g of Objectives with topic (20)	Understand ing of the relevance of Research (20)	Interpretation & Analysis (20)	Presentati on & Communi cation skills (20)	Query Handling (20)	Total (100)
-------------------------------------	----------------------------------------------------------	-----------------------------------------------------------------	-----------------------------------	--------------------------------------------------------	---------------------------	----------------

# MBA II Year Teaching and Evaluation Scheme W.E.F. Academic Session 2021-22 (In Accordance with AICTE Model Curriculum & New Education Policy)

### SEMESTER III

SNo	Codes	SUBJECT	I	PERIO	os	IN	TERNAI SO	L EVAI CHEMI	LUATION	SEM	END IESTER UATION	TOTAL	
	Codes		L	Т	P	CT	TA	PS	TOTAL	TE	PE	TOTAL	CREDIT
1	KMBN301	STRATEGIC MANAGEMENT	4	0	0	30	20	0	50	100	0	150	,
2	KMBN302	INNOVATION AND ENTREPRENEURSHIP	4	0	0	30	20	0	50	100	0	150	3
3	KVE 301	HUMAN VALUES AND ETHICS	3	1	0	30	20	0	50	100	0	150	3
4		Elective- 1 Specialization Group-1	4	0	0	30	20	0	50	100	0	150	3
5		Elective -2 Specialization Group-1	4	0	0	30	20	0	50	100	0	150	3
6		Elective -1 Specialization Group-2	4	0	0	30	20	0	50	100	0	150	3
7		Elective -2 Specialization Group-2	4	0	0	30	20	0	50	100	0	150	3
8	KMBN308	Summer Training Project Report & Viva Voce	0	2	0	0	50	0	50	0	100	150	4
		TOTAL										1200	25

### SEMESTER IV

SNo		SUBJECT	PE	RIODS		INT		EVAL HEME	UATION	SEM	END ESTER UATION	TOTAL	CREDIT
	Codes	, conser	L	Т	P	СТ	TA	PS	TOTAL	TE	PE	TOTAL	CREDIT
1	KMBN401	Emerging Technologies in Global Business Environment	4	0	0	30	20	0	50	100	0	150	3
2		Elective- 3 Specialization Group-1	4	0	0	30	20	0	50	100	0	150	3
3		Elective -4 Specialization Group-1	4	0	0	30	20	0	50	100	0	150	3
4		Elective- 5 Specialization Group-1	4	0	0	30	20	0	50	100	0	150	3
5		Elective -3 Specialization Group-2	4	0	0	30	20	0	50	100	0	150	3
6		Elective -4 Specialization Group-2	4	0	0	30	20	0	50	100	0	150	3
7		Elective -5 Specialization Group-2	4	0	0	30	20	0	50	100	0	150	3

MBA MAIN

Theering College

Director R.D. Engineering College Duhai, Ghaziabad Page 5

8	KMBN408	Research Project Report & Viva Voce	0	2	0	0	50	0	50	0	100	150	4
		TOTAL											
_												1200	25

# Specialization Group: HUMAN RESOURCE (HR)

# Elective Subjects in III Semester

S.No.	Code	Course Title
1	KMBN HR01	TALENT MANAGEMENT
2	KMBN HR02	EMPLOYEE RELATIONS AND LABOUR LAWS

### Elective Subjects in IV Semester

S.No.	Code	Course Title
1	KMBN HR03	HR ANALYTICS
2	KMBN HR04	PERFORMANCE AND REWARD MANAGEMENT
3	KMBN HR05	INTERNATIONAL HRM

### Specialization Group: MARKETING (MK)

### Elective Subjects in III Semester

S.No.	Code	Course Title
1	KMBN MK01	CONSUMER BEHAVIOUR AND MARKETING COMMUNICATION
2	KMBN MK02	MARKETING ANALYTICS

### Elective Subjects in IV Semester

S.No.	Code	Course Title	
I	KMBN MK03	B2B AND SERVICES MARKETING	
2	KMBN MK04	SALES AND RETAIL MANAGEMENT	
3	KMBN MK05	SOCIAL MEDIA AND WEB ANALYTICS	

MBA MAIN

E Hedd CO

Director
R.D. Engineering College
Duhai, Ghaziabad

Page 6

# Specialization Group: FINANCE (FM)

# Elective Subjects in III Semester

S.No.	Code	Course Title
1	KMBN FM01	INVESTMENT ANALYSIS AND PORTFOLIO MANAGEMENT
2	KMBN FM02	FINANCIAL PLANNING AND TAX MANAGEMENT

### Elective Subjects in IV Semester

S.No.	Code	Course Title
1	KMBN FM03	FINANCIAL DERIVATIVES
2	KMBN FM04	FOREIGN EXCHANGE AND RISK MANAGEMENT
3	KMBN FM05	FINANCIAL AND CREDIT RISK ANALYTICS

# Specialization Group: INTERNATIONAL BUSINESS (IB)

### Elective Subjects in III Semester

S.No.	Code	Course Title	
1	KMBN IB01	INTERNATIONAL BUSINESS MANAGEMENT	
2	KMBN IB02	EXPORT IMPORT DOCUMENTATION	

### Elective Subjects in IV Semester

S.No.	Code	Course Title	
1	KMBN IB03	INTERNATIONAL LOGISTICS	
2	KMBN IB04	CROSS CULTURAL MANAGEMENT	
3	KMBN IB05	INTERNATIONAL TRADE LAWS	

### Specialization Group: INFORMATION TECHNOLOGY (IT)

### Elective Subjects in III Semester

S.No.	Code	Course Title
1	KMBN IT01	DATA ANAYTICS FOR BUSINESS DECISIONS

MBA MAIN



Director R.D. Engineering College Duhai, Ghaziabad Page 7

2	KMBN IT02	AI AND ML FOR BUSINESS	
---	-----------	------------------------	--

# Elective Subjects in IV Semester

S.No.	Code	Course Title
	KMBN IT03	DATA BASE MANAGEMENT SYSTEM
2	KMBNI T04	CLOUD COMPUTING FOR BUSINESS
3	KMBN IT05	BUSINESS DATA WAREHOUSING & DATA MINING

# Specialization Group: OPERATION MANAGEMENT (OM)

### Elective Subjects in III Semester

1	KMBN OM 01	SUPPLY CHAIN & LOGISTICS MANAGEMENT	
2	KMBN OM 02	OPERATIONS PLANNING & CONTROL	

### Elective Subjects in IV Semester

3	KMBN OM 03	QUALITY MANAGEMENT
4	KMBN OM 04	PROJECT & SOURCING MANAGEMENT
5	KMBN OM 05	MANAGEMENT OF MANUFACTURING SYSTEM



Director College R.D. Engineering abad



### DEPARTMENT OF MANAGEMENT STUDIES

AVERAGE OF PROGRAM OUTCOME(2022-23)

					D			
YEAR	SEMESTER	SUBJECTS/ LABS WITH CODES	P.0.	D00	Program o			
			PO1	PO2	PO3	PO4	PO5	PO6
		MCOB(KMBN-101)		1.2	1.4	2	1.2	1.6
EAR	<b>∞</b>	ME(KMBN-102)	3	3	2.6		1.8	
	JE .	FAA(KMBN-103)	3	3	3		2.6	2.6
	NE.	BSA(KMBN-104)	3	3	3		1.6	
	SE	MM(KMBN-105)	2.2	2.2	2.4	1.4	2.2	2.4
	_	DT(KMBN-106)	3	2.4	3	8 <b>2</b> 8	2	2.3
>		BUSS.COMM.(KMBN-107)	1	1		-	3	1
S		BE & LA (KMBN-201)	3	1.7	1.7	2.4	2.8	3
7	~	HRM(KMBN-202)	2	2	2	1.2	2.6	2
8	E E	BRM(KMBN-203)	3	3	2.4	1	2	2
Σ	VES	FM & CF (KMBN-204)	2.8	2.4	2.6	1	2	2
	SEI	OM(KMBN-205)	3	2.4	2.2	1.8	2.4	2.4
	N O	QTM(KMBN-206)	3	3	3	-	1	1
	2	DM & E-COMM.(KMBN-207)	2.6	2	2.2	1.6	2	2.4
		MIS(KMBN-208)	3	1	1		-	1.8
		SM(KMBN-301)	2	1	1	2	1	2
		I & E (KMBN-302)	2	1	1	2	1	2
		HV & PE(KVE-301)	1	1	1	2.6	1.8	1.2
	E.	TM(KMBN-HR01	1.6	1.2	1.4	1.5	1.2	1.6
	3RD SEMEST	ER & LL(KMBN-HR02			3	- 2	3	1.2
77		CB & MC(KMBN-MK01)			2.4	-	2.8	2.8
						1.2	1.2	2
				2.6	3	-	2.6	
∝					3	-	2	
🖔						-	1.3	2
=							-	2
9	МВА 2ND						3	1
2						3		2
۸		·				-		1.4
B								2
-								2.4
								1
								2.4
								2
	4							1.6
1		Table - 100 (200 and 100 and 1						1.6
1	1							1.0
1	1							3
								1.93
		AVERAGE	2.30	1.33	2.03	1.70	R.D. F	1.93
	MBA 2ND YEAR MBA 1ST YEAR	3RD SEMESTER ZND SEIV	## ANALYTICS (KMBN HR03)  ## ANALYTICS (KMBN HR04)  ## ANALYTICS (KMBN HR03)  ## ANALYTICS (KMBN HR04)  ## ANALYTICS (KMBN HR05)  ## ANALYTICS (KMBN HR03)  ## ANALYTICS (KMBN HR03)  ## ARM (KMBN HR04)  ## ANALYTICS (KMBN HR05)  ## ANALYTICS (KMBN HR05)	### ME(KMBN-102)  ### FAA(KMBN-103)  ### FAA(KMBN-104)  ### FAA(KMBN-105)  ### DT(KMBN-106)  ### DT(KMBN-106)  ### DT(KMBN-106)  ### DT(KMBN-106)  ### DT(KMBN-106)  ### DT(KMBN-106)  ### DT(KMBN-201)  ### DT(KMBN-203)  ### DT(KMBN-203)  ### DT(KMBN-205)  ### DT(KMBN-205)  ### DT(KMBN-206)  ### DT(KMBN-206)  ### DT(KMBN-206)  ### DT(KMBN-208)  ### DT(KMBN-208)  ### DT(KMBN-301)  ### DT(KMBN-301)  ### DT(KMBN-301)  ### DT(KMBN-301)  ### DT(KMBN-301)  ### DT(KMBN-401)  ### DT(KM	MECOB(KMBN-101)  WE(KMBN-102)  FAA(KMBN-103)  BAA(KMBN-105)  DT(KMBN-106)  BUSS.COMM.(KMBN-107)  DT(KMBN-106)  BUSS.COMM.(KMBN-107)  DT(KMBN-202)  BE & LA (KMBN-201)  HRM(KMBN-202)  BRM(KMBN-203)  FM & CF (KMBN-204)  DM & CF (KMBN-206)  DM & CF (CMBN-106)  DM & CF (KMBN-206)  DM & CF (KMBN-207)  DM & CF (KMBN-208)  TMS(KMBN-208)  DM & CF (KMBN-208)  TMS(KMBN-208)  DM & CF (KMBN-207)  DM & CF (KMBN-208)  TMS(KMBN-208)  TMS(	### ADDRESS   PART   P	MCOB(KMBN-101)  WE(KMBN-102)  FAA(KMBN-103)  BSA(KMBN-104)  MM(KMBN-105)  DT(KMBN-106)  DT(KMBN-106)  DT(KMBN-106)  BUSC.COMM.(KMBN-107)  HRM(KMBN-201)  BE & LA (KMBN-201)  HRM(KMBN-202)  DE & LA (KMBN-201)  SBE & LA (KMBN-201)  SBE & LA (KMBN-203)  SBE & LA (KMBN-203)  SBE & LA (KMBN-204)  DM & CF (KMBN-206)  DM & CF (KMBN-206)  DM & E-COMM.(KMBN-207)  MIS(KMBN-206)  DM & E-COMM.(KMBN-207)  MIS(KMBN-208)  SM(KMBN-301)  LE (KMBN-301)  LE (KMBN-302)  HV & PE(KVE-301)  TM (KMBN-106)  DA FOR BUSC. DECISION(KMBN 101)  ER & LL(KMBN-HR01)  ER & LL(KMBN-HR02)  AM (KMBN HR01)  ER & LL(KMBN-HR02)  DA FOR BUSS. DECISION(KMBN 101)  THE KMBN HR02)  DA FOR BUSS. DECISION(KMBN 101)  DA FOR BUSS. DECISION(KMBN 101)  SALES & RETAIL MGT. (KMBN MK04)  THE ANALYTICS (KMBN HR03)  P & RM (KMBN HR04)  THE ANALYTICS (KMBN HR03)  P & RM (KMBN HR04)  THE ANALYTICS (KMBN HR03)  P & RM (KMBN HR05)  DE MS(KMBN HR04)  THE ANALYTICS (KMBN HR03)  P & RM (KMBN HR05)  DE MS(KMBN HR04)  THE ANALYTICS (KMBN HR05)  DE MS(KMBN HR05)  DE MS(KMBN HR04)  THE ANALYTICS (KMBN HR05)  DE MS(KMBN HR05)  DE MS(KMBN HR04)  THE ANALYTICS (KMBN HR05)  DE MS(KMBN HR05)  DE MS(KMBN HR04)  THE ANALYTICS (KMBN HR05)  DE MS(KMBN HR05)  DE MS(KMBN HR04)  THE ANALYTICS (KMBN HR05)  DE MS(KMBN HR05)  DE MS(KMBN HR05)  DE MS(KMBN HR04)  THE ANALYTICS (KMBN HR05)  DE MS(KMBN HR05)  DE MS(KMBN HR05)  DE MS(KMBN HR06)  DE MS(KMBN	MCOB(KMBN-101)  WERKINSH-102)  WERKINSH-103)  WERKINSH-103)  WERKINSH-104)  WERKINSH-105)  WERKINSH-105)  WERKINSH-106)  WERKINSH-106)  WERKINSH-106)  WERKINSH-106)  WERKINSH-106)  WERKINSH-107)  WERKINSH-106)  WERKINSH-107)  WERKINSH-107)  WERKINSH-108)  WERKI



R.D.ENGINEE	RING COLLEGE , GHA	ZIBAD
DEPART	MENT OF MANAGEMENT STUDIES	
ACTION TAKEN ON IDENT	TIFIED GAP OF PROGRAM OUTCOM	IES(2022-2023)
Gap Identified	Relevent PO	Action Taken
NO GAP		





DEPARTMENT OF MANAGEMENT

# COURSE OUTCOME (2022-2023)

### MBA- I Sem. (2022-23)

# KMBN-101 Management Concepts & Organizational Behaviour

CO	Course Outcomes
CO1	Developing understanding of managerial practices and their perspectives.
CO2	Understanding and Applying the concepts of organizational behavior.
CO3	Applying the concepts of management and analyze organizational behaviors in real world situations.
CO4	Comprehend and practice contemporary issues in management.
CO5	Applying managerial and leadership skills among student.

	Mapping	of Course ou	tcomes with	Program ou	utcomes	
KN	/BN-101 Ma	anagement C	oncepts & O	rganization	al Behavio	ur
		Prograr	m outcomes(I	PO)		
со	PO1	PO2	PO3	PO4	PO5	PO6
CO1	1	1	2	1	1	1
CO2	3	2	1	1	1	1
CO3	2	1	2	•	1	2
CO4	2	1	1	3	2	2
CO5	2	1	1	3	1	2
Average	2.0	1.2	1.4	2.0	1.2	1.6





# DEPARTMENT OF MANAGEMENT

# **KMBN-102 Managerial Economics**

СО	Course Outcomes
CO1	Students will be able to remember the concepts of micro economics and also able to understand the various micro economic principles to make effective economic decisions under conditions of risk and uncertainty.
CO2	The students would be able to understand the law of demand & supply & their elasticities, evaluate & analyse these concepts and apply them in various changing situations in industry. Students would be able to apply various techniques to forecast demand for better utilization of resources.
CO3	The students would be able to understand the production concept and how the production output changes with the change in inputs and able to analyse the effect of cost to business and their relation to analyze the volatility in the business world
CO4	The students would be able to understand & evaluate the different market structure and their different equilibriums for industry as well as for consumers for the survival in the industry by the application of various pricing strategic.
CO5	The students would be able to analyse the macroeconomic concepts & their relation to micro economic concept & how they affect the business & economy.

			tcomes with Managerial E			
		KIVIDIN-102 I	vialiageriai E	conomics		
			Program ou	utcomes(PC	))	
со	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	3	1		2	
CO2	3	3	3	-	1	*
CO3	3	3	3	-	1	-
CO4	3	3	3	-	2	
CO5	3	3	3	-	3	-
Average	3	engiaee	2.6	-	1.8	7-



# DEPARTMENT OF MANAGEMENT

# KMBN-103 Financial Accounting & Analysis

СО	Course Outcomes
CO1	Understand and applying accounting concepts, principles and conventions for their routine monetary transaction.
CO2	Understand about IFRS, Ind AS and IAS for preparation and reporting of financial statement.
CO3	Create and prepare financial statements and cash flow in accordance with generally Accepted Accounting principles.
CO4	Analyse, interpret and communicate the information contained in basic financial statements and explain the limitations of such statements.
CO5	Recognising various types of accounting and utilize the technology and social responsibility in facilitating and enhancing accounting and financial reporting processes

	Mapping	of Course ou	tcomes with	Program ou	itcomes	
	KMBN	-103 Financia	al Accounting	& Analysis		
			Program ou	tcomes(PO	)	
со	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	2	3	-	3	2
CO2	3	2	3	-	3	2
CO3	3	3	3	-	2	3
CO4	3	3	3		3	3
CO5	3	3	3	-	2	3
Average	3	3	3	-	2.6	2.6





**DEPARTMENT OF MANAGEMENT** 

# **KMBN-104 Business Statistics and Analytics**

СО	Course Outcomes
CO1	Gaining knowledge of basic concept/ fundamentals of business statistics.
CO2	To compute various measures of central tendency, Measure of dispersion, Time series analysis, Index Number, Correlation and Regression analysis and their implication on business performance.
CO3	Evaluating basic concepts of probability and perform probability theoretical distribution.
CO4	To apply Hypothesis testing concepts and able to apply inferential statistics-t, F, Z Test and Chi-Square Test.
CO5	To perform practical application by taking managerial decision and evaluating the concept of Business Analytics

	Mapping	of Course ou	tcomes with	Program ou	itcomes	
	КМІ	BN-104 Busin	ess Statistics	and Analyt	ics	
			Program ou	tcomes(PO)		
СО	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	3	3	-	1	-
CO2	3	3	3	-	1	-
CO3	3	3	3		1	-22
CO4	3	3	3	-	2	
CO5	3	3	3	-	3	-:
Average	3	3	3	-	1.6	<b>≅</b> 4





# DEPARTMENT OF MANAGEMENT

# KMBN-105 Marketing Management

СО	Course Outcomes
CO1	Remember and Comprehend basic marketing concepts.
CO2	Understand marketing Insights on application of basic marketing concepts.
CO3	Able to apply and develop Marketing Strategies and Plans.
CO4	Understand and analyzing Business/ Consumer Markets and ability Identify & evaluate Market Segments and Targeting.
CO5	Develop skills to understand the current global and digital aspect of Marketing.

	Mapping	of Course ou	tcomes with	Program ou	ıtcomes	
	J	KMBN-105 N	larketing Ma	nagement		
			Program ou	itcomes(PO	)	
СО	PO1	PO2	PO3	PO4	PO5	PO6
CO1	2	1	3	1	1	3
CO2	3	3	2	1	3	2
СОЗ	3	2	2	3	2	3
CO4	1	2	2	1	3	3
CO5	2	3	3	1	2	1
Average	2.2	2.2	2.4	1.4	2.2	2.4





### **DEPARTMENT OF MANAGEMENT**

# KMBN-106 Design Thinking

СО	Course Outcomes
CO1	Gain in depth knowledge about creative thinking and design thinking in every stage of problem.
CO2	To transform creative thinking into design thinking in every stage of your problem
CO3	To apply design thinking to your real life problems.
CO4	Applying design thinking to your real life problems/ situations in order to evolve an innovative and workable solutions.
CO5	Understand and implement design thinking to your real life problems / situations in order to evolve an innovative and workable solution.

	Mappin	g of Course	outcomes wit	h Program	outcomes			
		KMBN	-106 Design T	hinking				
	Program outcomes(PO)							
со	PO1	PO2	PO3	PO4	PO5	PO6		
CO1	3	2	3		3	2		
CO2	3	3	3	-	3	2		
CO3	3	3	3	-	2	3		
CO4	3	2	-	-	1	-		
CO5	3	2	-	-	1	-		
Average	3.0	2.4	3.0	-	2	2.3		





# DEPARTMENT OF MANAGEMENT

# **KMBN-107 Business Communication**

СО	Course Outcomes
CO1	Applying business communication strategies and principles to prepare effective communication for domestic and international business situations.
CO2	Analyse ethical, legal, cultural and global issues affecting business communication.
соз	Develop an understanding of appropriate organizational formats and channels used in business communications.
CO4	Gaining and understanding of emerging electronic modes of communication.
CO5	Developing effective verbal and non verbal communication skills

	Mapping	of Course ou	tcomes with I	Program ou	itcomes			
	KI	MBN-107 Bu	siness Comn	nunication				
Program outcomes(PO)								
СО	PO1	PO2	PO3	PO4	PO5	PO6		
CO1	1	1	-		3	1		
CO2	1	1	-	-	3	1		
СОЗ	1	1	-		3	1		
CO4	1	1	-		3	1		
CO5	1	1	-	-	3	1		
Average	1	1	-	:=:	3	1		





# DEPARTMENT OF MANAGEMENT

# KMBN-151 IT Skills Lab-I

CO	Course Outcomes
CO1	Gain in depth knowledge about the functioning of computers and its uses for managers.
CO2	Learn to use Internet and its applications.
соз	Understand and implement word processing software.
CO4	Learn applications on spread sheet software.
CO5	Analyse and learn Presentation software.

	Mapping	of Course ou	tcomes with I	Program ou	itcomes	
		KMBN-	151 IT Skills L	.ab-I		
			Program out	tcomes(PO	)	
со	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	-	3	1	2	-
CO2	3	-	3	1	2	-
CO3	3	2	3	1	2	-
CO4	3	2	3	1	2	-
CO5	3	2	3	1	2	-
Average	3.0	2.0	3.0	1.0	2.0	-





# DEPARTMENT OF MANAGEMENT

### KMBN-152 Mini Project-1

СО	Course Outcomes
CO1	Gain in depth knowledge on innovative idea for product or services in form of a project report.
CO2	To apply innovative idea, its feasibilities and detail descriptions.

	Mapping	of Course ou	tcomes with	Program o	utcomes			
		KMBN-1	.52 Mini Proj	ect-1				
	Program outcomes(PO)							
со	PO1	PO2	PO3	PO4	PO5	PO6		
CO1	2	3	-	2	2	1		
CO2	2	3	-	2	2	1		
Average	2.0	3.0	₹.	2.0	2.0	1.0		





**DEPARTMENT OF MANAGEMENT** 

# 2nd SEM

# KMBN-201 Business Environment & Legal Aspect of Business

Course Outcomes
Develop understanding and fundamental Knowledge about business environment.
Develop understanding on the concepts of Business Environment and international business environment.
Develop basic understanding of Law of contract.
Understanding of provisions of companies Act concerning incorporation and regulation of business organisations.
Able to analyze case laws in arriving at conclusions facilitating business decisions.

	Mapping	of Course ou	tcomes with	Program ou	tcomes					
К	MBN-201 B	usiness Envir	onment & Le	gal Aspect o	of Business	3				
	Program outcomes(PO)									
СО	PO1	PO2	PO3	PO4	PO5	PO6				
CO1	3	-	-	2	2	3				
CO2	3	-	-	3	3	3				
соз	3	2	2	3	3	3				
CO4	3	2	2	1	3	3				
CO5	3	1	1	3	3	3				
Average	3.0	1.7	1.7	2.4	2.8	3.0				



Director College
R.D. Engineering Ghaziabad
Duhai, Ghaziabad



### **DEPARTMENT OF MANAGEMENT**

# KMBN-202 Human Resource Management

СО	Course Outcomes
CO1	Synthesize the role of human resources management as it supports the success of the organization including the effective development of human capital as an agent for organisational change.
CO2	Demonstrate knowledge of laws that impact behaviour in relationships between employers and employee that ultimately impact the goals and strategies of the organization.
CO3	Understand the role of employee benefits and compensation as critical components of employee performance, productivity and organizational effectiveness.
CO4	Show evidence of the ability to analyze, manage and problem solve to deal with the challenges and complexities of the practice of collective bargaining.
CO5	Demonstrate knowledge of practical application of training and employee development as it impacts organizational strategy and competitive advantage.

	Mapping	of Course out	tcomes with	Program of	utcomes				
	KME	3N-202 Huma	an Resource	Manageme	ent				
	Program outcomes(PO)								
СО	PO1	PO2	PO3	PO4	PO5	PO6			
CO1	2	2	2	2	3	2			
CO2	2	2	2	1	2	2			
соз	2	2	2	1	3	2			
CO4	2	2	2	1	3	2			
CO5	2	2	2	1	2	2			
Average	2	2	2	1.2	2.6	2			





### **DEPARTMENT OF MANAGEMENT**

# **KMBN-203 Business Research Methods**

СО	Course Outcomes
CO1	Knowledge of concept / fundamentals for different types of research.
CO2	Applying relevant research techniques.
CO3	Understand relevant scaling and measurement techniques and should use appropriate sampling techniques.
CO4	Synthesizing different techniques of coding, editing, tabulation and analysis in doing research.
CO5	Evaluating statistical analysis which includes ANOVA technique and prepare research report.

	Mapping	of Course ou	tcomes with	Program ou	ıtcomes			
	KI	MBN-203 Bus	iness Resear	ch Methods	6			
	Program outcomes(PO)							
СО	PO1	PO2	PO3	PO4	PO5	PO6		
CO1	3	3	3	1	2	2		
CO2	3	3	3	1	2	2		
соз	3	3	2	1	2	2		
CO4	3	3	2	1	2	2		
CO5	3	3	2	1	2	2		
Average	3	3	2.4	1	2	2		







**DEPARTMENT OF MANAGEMENT** 

# KMBN-204 Financial Management and Corporate Finance

СО	Course Outcomes
CO1	Understand the different basic concept / Models of corporate finance and Governance.
CO2	Understand the practical application of time value of money and evaluating long term investment decisions.
CO3	Develop analytical skills to select the best source of capital, structure and leverage.
CO4	Understand the use and application of different models for firm's optimum dividend payout.
CO5	Understand the recent trends of mergers and acquisition and its valuation.

	Mapping	of Course ou	tcomes with	Program ou	utcomes				
	KMBN-204	Financial Ma	nagement ar	nd Corporat	e Finance				
50.5	Program outcomes(PO)								
СО	PO1	PO2	PO3	PO4	PO5	PO6			
CO1	3	3	3	-	3	2			
CO2	2	2	3	-	2	2			
СОЗ	3	3	3	-	1	2			
CO4	3	3	2	1	2	2			
CO5	3	1	2	1	2	2			
Average	2.8	2.4	2.6	1	2	2			





### **DEPARTMENT OF MANAGEMENT**

### **KMBN-205 Operations Management**

СО	Course Outcomes
CO1	Understand the role of Operations in overall business Strategy of the firm – the application of OM policies and techniques to the service sector as well as manufacturing firms.
CO2	Understand and Apply the concept of Material Management, Supply Chain Management and TQM perspectives.
CO3	Identify and evaluate the key factors and their interdependence of these factors in the design of effective operating systems.
CO4	Analyze / understand the trends and challenges of Operations Management in the current business environment.
CO5	Apply techniques for effective utilization of operational resources and managing the processes to produce good quality products and services at competitive prices.

	Mapping	of Course ou	tcomes with	Program o	utcomes	
	K	(MBN-205 O	perations Ma	nagement		
	))					
СО	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	3	2	1	2	3
CO2	3	2	2	1	3	2
соз	3	2	2	3	2	3
CO4	3	2	2	3	3	3
CO5	3	3	3	1	2	1
Average	3	2.4 ineerin	2.2	1.8	2.4	2.4



### DEPARTMENT OF MANAGEMENT

# **KMBN-206 Quantitative Techniques for Managers**

СО	Course Outcomes
CO1	Be able to understand the characteristics of different types of decision-making environments and the appropriate decision making approaches and tools to be used in each type.
CO2	To formulate linear programming problem and to find optimal solution by graphical simplex method.
CO3	Be able to build and solve Transportation Models and Assignment Models also to solve game theory problems by understanding pure and mix strategies.
CO4	To assign optimal sequence of difference jobs on different machines and develop understanding of queuing theory concepts.
CO5	To implement replacement of equipments at right time and able to implement project management concepts like CPM, PERT to reduce cost and time.

	Mapping	of Course ou	tcomes with	Program ou	ıtcomes	
	KMBN-	206 Quantita	tive Techniqu	ues for Mar	agers	
		1	Program ou	tcomes(PO	)	
СО	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	3	3	:	1	1
CO2	3	3	3	-	1	1
CO3	3	3	3	= .	1	1
CO4	3	3	3		1	1
CO5	3	3	3	-	1	1
Average	3	3	3	-	1	1



**DEPARTMENT OF MANAGEMENT** 

# KMBN-207 Digital Marketing and E-Commerce

СО	Course Outcomes
CO1	Be able to understand the concept of Digital Marketing & E-commerce in today's scenario.
CO2	To able to create and maintain a good website and blog posts.
CO3	Be able to understand and apply SEO and Email Marketing in today's modern world.
CO4	To apply the Social Media Marketing techniques via various platforms.
CO5	To implement various Analytics tools of online marketing.

	Mapping	of Course ou	tcomes with	Program ou	utcomes			
	KMBN-	207 Digital	Marketing a	nd E-Comn	nerce			
_	Program outcomes(PO)							
СО	PO1	PO2	PO3	PO4	PO5	PO6		
CO1	3	2	2	1	1	1		
CO2	3	2	3	1	2	2		
CO3	2	3	2	3	2	3		
CO4	3	2	3	1	2	3		
CO5	2	1	1	2	3	3		
Average	2.6	2	2.2	1.6	2	2.4		





**DEPARTMENT OF MANAGEMENT** 

# KMBN-208 Management Information System

СО	Course Outcomes
CO1	Be able to understand the importance of information management in business and management.
CO2	To understand and formulate different types of information systems in business.
CO3	Be able to apply the theory and concepts in practical with help of software.
CO4	To apply various security and ethical issues with Information Systems
CO5	To synthesize applications on Spread sheet and database software.

	Mapping	of Course ou	tcomes with	Program ou	itcomes				
	KMBN	-208 Manag	gement Infor	mation Sys	stem				
	Program outcomes(PO)								
со	PO1	PO2	PO3	PO4	PO5	PO6			
CO1	3	1	-	-	-	1			
CO2	3	1	1	-	-	2			
СОЗ	3	1	1	-	-	2			
CO4	3	1	1		-	2			
CO5	3	1	1	-	-	2			
Average	3	1	1	<u>=</u>	7-	1.8			





**DEPARTMENT OF MANAGEMENT** 

### KMBN-251 IT Skills Lab-2

CO	Course Outcomes
CO1	To gain knowledge of pivot table and understand the validating & auditing techniques.
CO2	Learn to use different charting techniques in MS Excel.
CO3	Learn to use different formatting techniques in MS Excel.

	Mapping of	of Course ou	tcomes with	Program o	utcomes			
		KMBN-2	51 IT Skills	Lab-2				
	Program outcomes(PO)							
со	PO1	PO2	PO3	PO4	PO5	PO6		
CO1	1	1	2	1	1	1		
CO2	3	2	1	1	1	1		
СОЗ	2	1	2	-	1	2		
Average	2.0	1.3	1.7	1.0	1.0	1.3		





**DEPARTMENT OF MANAGEMENT** 

# KMBN-252 Mini Project-2

### **CO Course Outcomes**

СО	Course Outcomes
CO1	To gain knowledge of issues challenge of the industry
CO2	Learn to prepare report on the application of emerging technologies in the selected industry

	Mapping o	of Course out	tcomes with	Program o	utcomes			
		KMBN-2	52 Mini Pro	ject-2				
	Program outcomes(PO)							
со	PO1	PO2	PO3	PO4	PO5	PO6		
CO1	1	1	2	1	1	1		
CO2	3	2	1	1	1	1		
Average	2	1.5	1.5	1	1	1		





DEPARTMENT OF MANAGEMENT

# MBA-3 Sem.

# **KMBN-301 STRATEGIC MANAGEMENT**

СО	Course Outcomes
CO1	Formulate organizational vision, mission, goals, and values
CO2	Develop strategies and action plans to achieve an organization's vision, mission, and goals.
CO3	Develop powers of managerial judgment, how to assess business risk, and improve ability to make sound decisions and achieve effective outcomes.
CO4	Evaluate and revise programs and procedures in order to achieve organizational goals;
CO5	Consider the ethical dimensions of the strategic management process

	Mapping	of Course ou	tcomes with	Program ou	tcomes			
	K	MBN-301 STF	RATEGIC MAN	IAGEMENT				
	Program outcomes(PO)							
СО	PO1	PO2	PO3	PO4	PO5	PO6		
CO1	1	1	2	1	1	1		
CO2	3	2	1	1	1	1		
CO3	2	1	2	-	1	2		
CO4	2	1	1	3	2	2		
CO5	2	1	1	3	1	2		
Average	2	1	1	2	1	2		







**DEPARTMENT OF MANAGEMENT** 

# KMBN-302 INNOVATION & ENTREPRENEURSHIP

со	Course Outcomes
CO1	Remember and comprehend basic concepts of entrepreneurship
CO2	Develop knowledge on Entrepreneurial Finance, Assistance and role of Entrepreneurial Development Agencies
CO3	Develop understanding of converting an Idea to an opportunity and develop understanding of various funding sources
CO4	Gain in depth knowledge of innovation and its various sources
CO5	Develop understanding of various dimensions of innovation along with current trends and general awareness of innovation and startup

	Mapping	of Course ou	tcomes with	Program ou	tcomes	
	KMBN	302 INNOVA	TION & ENTR	REPRENEUR	SHIP	
СО	PO1	PO2	PO3	PO4	PO5	PO6
CO1	1	1	2	1	1	1
CO2	3	2	1	1	1	1
соз	2	1	2	-	1	2
CO4	2	1	1	3	2	2
CO5	2	1	1	3	1	2
Average	2	1	1	2	1	2





**DEPARTMENT OF MANAGEMENT** 

# **KVE-301 UNIVERSAL HUMAN VALUES AND PROFESSIONAL ETHICS**

СО	Course Outcomes
CO1	Understand the significance of value inputs in a classroom, distinguish between values and skills, understand the need, basic guidelines, content and process of value education, explore the meaning of happiness and prosperity and do a correct appraisal of the current scenario in the society
CO2	Distinguish between the Self and the Body, understand the meaning of Harmony in the Self the Co-existence of Self and Body.
CO3	Understand the value of harmonious relationship based on trust, respect and other naturally acceptable feelings in human-human relationships and explore their role in ensuring a harmonious society
CO4	Understand the harmony in nature and existence, and work out their mutually fulfilling participation in the nature.
CO5	Distinguish between ethical and unethical practices, and start working out the strategy to actualize a harmonious environment wherever they work.

KVE			tcomes with P N VALUES ANI			ICS			
	Program outcomes(PO)								
СО	PO1	PO2	PO3	PO4	PO5	PO6			
CO1	1	-	/ <del>-</del>	3	2	1			
CO2	-	:=	-	3	1	1			
соз	-	-	1	3	1	1			
CO4	-	1	-	3	-	1			
CO5	-	-	-	1	2	2			
Average	1	1	eerin	2.6	1.8	1.2			



### **DEPARTMENT OF MANAGEMENT**

# KMBN HR01- Talent Management

СО	Course Outcomes
CO1	Knowledge of Talent Management Processes
CO2	Understanding for analysis of the impacts of Talent management in the organization
соз	Competency to implement Talent Management practices
CO4	Competency to develop leadership qualities among subordinate.
CO5	Knowledge about the reward system to support Talent management

N	lapping of	Course out	comes with	Program	outcome	s		
	KN	ИBN HR01-	Talent Ma	nagemen	t			
	Program outcomes(PO)							
СО	PO1	PO2	PO3	PO4	PO5	PO6		
CO1	1	2	1	-	1	1		
CO2	2	1	2	-	1	2		
CO3	2	1	2	1	1	2		
CO4	2	1	1	2	2	2		
CO5	1	1	1	-	1	1		
Average	1.6	1.2	1.4	1.5	1.2	1.6		





**DEPARTMENT OF MANAGEMENT** 

# KMBN HR02- Employee Relations & Labour Laws

CO	Course Outcomes
CO1	Knowledge of Industrial Relation framework
CO2	Competency to understand the importance of Employee Relation within the perspective of Industrial Relation.
CO3	Knowledge about relevant Laws of HR management.
CO4	Competency to interpreted and implement the Labor Laws within organization.
CO5	Competency to use Collective Bargaining and Grievance redressal Mechanism

N	lapping of	Course out	comes with	Program	outcome	S			
	KMBN HR	02- Employ	ee Relatio	ns & Labo	our Laws				
	Program outcomes(PO)								
СО	PO1	PO2	PO3	PO4	PO5	PO6			
CO1	3	-	-	-	3	1			
CO2	3	-	_	-	3	1			
CO3	3	3	3	-	3	1			
CO4	3	3	3	-	3	1			
CO5	3	3	3	-	3	2			
Average	3	3	3	-	3	1.2			







### **DEPARTMENT OF MANAGEMENT**

# KMBN MK01-CONSUMER BEHAVIOR & MARKETING COMMUNICATION

СО	Course Outcomes
CO1	Understand the three major influences on customer choice: the process of human decision making in a marketing context; the individual customers make up; the environment in which the customer is embedded.
CO2	Develop the cognitive skills to enable the application of the above knowledge to marketing decision making and activities
CO3	Be able to demonstrate how concepts may be applied to marketing strategy.
CO4	Apply an IMC approach in the development of an overall advertising and promotional plan.
CO5	Enhance creativity, critical thinking and analytical ability through developing an integrated marketing communication campaign.

N	lapping of	Course out	comes with	Program	outcome	S			
KMBN	MK01-CON	SUMER BEHA	AVIOR & MAR	KETING CO	MMUNICA.	TION			
	Program outcomes(PO)								
СО	PO1	PO2	PO3	PO4	PO5	PO6			
CO1	2	2	2	-	3	3			
CO2	3	3	3	-	3	3			
CO3	3	3	3	-	3	3			
CO4	3	2	2	-	3	3			
CO5	3	2	2	-	2	2			
Average	2.8	2.4	2.4	-	2.8	2.8			

Director College R.D. Engineering abad



DEPARTMENT OF MANAGEMENT

## KMBN MK02- Marketing Analytics

СО	Course Outcomes
CO1	Students will develop the skill in marketing analytics
CO2	Students will be acquainted with better understanding of real life marketing data and its analysis.
CO3	To interpret the marketing data for effective marketing decision making
CO4	To draw inferences from data in order to answer descriptive, predictive and prescriptive questions relevant to marketing managers
CO5	Students will develop analytical skill for effective market decision making in real life environment.

	Mapping	of Course ou	tcomes with	Program ou	itcomes	
_		KMBN MK02	2- Marketing	Analytics		蜀
			Program ou	tcomes(PO	)	
со	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	2	2	1	1	1
CO2	3	3	3	2	2	2
CO3	2	3	2	1	1	3
CO4	2	-	-	1	1	-
CO5	2	_		1	1	-
Average	2.4	2.7	2.3	1.2	1.2	2



Director College

R.D. Engineering Ghaziabad

Duhai, Ghaziabad



DEPARTMENT OF MANAGEMENT

## KMBN FM01 Investment Analysis & Portfolio Management

СО	Course Outcomes
CO1	Understand about various investment avenues.
CO2	Understand the value of assets and manage investment portfolio.
CO3	Understand various Models of Investment and its application
CO4	Understand and create various investment strategies on the basis of various market conditions.
CO5	Measure riskiness of a stock or a portfolio position

N	/lapping of	Course out	comes with	Program	outcome	S		
KMBI	N FM01 In	vestment	Analysis &	Portfolio	Manage	ment		
	Program outcomes(PO)							
со	PO1	PO2	PO3	PO4	PO5	PO6		
CO1	3	1	3	<b>*</b>	1	-		
CO2	3	3	3		3	-		
соз	3	3	3	-	3	-		
CO4	3	3	3	-	3	-		
CO5	3	3	3	-	3			
Average	3	2.6	3	-	2.6	-		



Director College R.D. Engineering Ghaziabad



#### **DEPARTMENT OF MANAGEMENT**

#### KMBN FM02- Financial Planning & Tax Management

СО	Course Outcomes
CO1	Understand about various tax provisions and planning.
CO2	Understand the scope tax planning concerning various business and managerial and strategic activities can be explored.
CO3	Have Know about various Tax Dates Rates and Forms
CO4	Have Knowledge of Financial Planning and its Process.
CO5	Have knowledge about asset allocation and retirement planning process

	Mapping							
	KMBN FM	102- Financia	al Planning 8	k Tax Mana	gement			
	Program outcomes(PO)							
СО	PO1	PO2	PO3	PO4	PO5	PO6		
CO1	3	-	-	-	2	-		
CO2	3	2	3	_	2	-		
CO3	3	3	3	-	2	-		
CO4	3	3	3	-	-	-		
CO5	3	3	3	-	-	-		
Average	3	2.8	3	-	2	-		





DEPARTMENT OF MANAGEMENT

## KMBN IT01- Data Analytics for Business Decisions

CO	Course Outcomes
CO1	Understand the basics of business analysis and Data Science
CO2	Understand data management and handling and Data Science Project Life Cycle.
CO3	Understand the data mining concept and its techniques
CO4	Understand and Analyzing machine learning concept
CO5	Understand the application of business analysis in different domain

	Mapping	of Course ou	tcomes with	Program o	utcomes			
	KMBN IT	01- Data An	alytics for B	usiness De	cisions			
	Program outcomes(PO)							
СО	PO1	PO2	PO3	PO4	PO5	PO6		
CO1	1	1	-	1	-	-		
CO2	3	2	-	1	-	-		
CO3	2	1		-	1	2		
CO4	2	1	-	3	2	2		
CO5	2	1	-	3	1	2		
Average	2	1.2	-	2	1.3	2		







**DEPARTMENT OF MANAGEMENT** 

#### KMBN IT02- AI & Machine Learning for Business

Course Outcomes
To understand the need of Machine Learning & Statistics for solving various problems.
To understand the basic concepts of Supervised and Unsupervised learning.
To apply regression analysis on the data available.
To design appropriate machine learning and apply on real world problems
To optimize different Machine Learning & Deep Learning Techniques.

N	lapping of	Course out	comes with	Program	outcome	S		
	KMBN IT	02- AI & M	achine Lear	ning for Bu	usiness			
	Program outcomes(PO)							
со	PO1	PO2	PO3	PO4	PO5	PO6		
CO1	3	-	-	1	-			
CO2	3	-	-	1	-			
CO3	3	-	-	-	-	-0		
CO4	3	1	1	3	-	2		
CO5	3	1	1	3	-	2		
Average	3	1	1	2	-	2		





**DEPARTMENT OF MANAGEMENT** 

## **FOURTH SEMESTER**

## KMBN-401 Emerging Technologies in Global Business Environment

СО	Course Outcomes
CO1	To get an overview of the changing context of International Business in the wake of Industry 4.0
CO2	Conceptual understanding of the new technologies that are driving change in business operations and strategy
CO3	Understand shifts in economic thought and its impact on business decisions.
CO4	Understand changing geo politics and analyses its impact on international Business
CO5	Critically think about issues and challenges in the Global World and find sustainable solutions

	Mappii	ng of Course	outcomes w	ith Program	outcomes					
KIV	1BN-401 Er	merging Tech	nnologies in (	Global Busin	ess Environ	ment				
со	Program outcomes(PO)									
	PO1	PO2	PO3	PO4	PO5	PO6				
CO1	3	-	-	-		1				
CO2	3		-	2		1				
соз	3	•0	-	2	3	1				
CO4	3	-:	-	2	3	1				
CO5	3	- ;	-	2	3	1				
Average	3	<b>=</b> :	-	2	3	1				





DEPARTMENT OF MANAGEMENT

#### KMBN HR 03 - HR ANALYTICS

СО	Course Outcomes
CO1	Apply HR Analytical techniques in the areas of HRP, recruitment and selection, Compensation and Benefits and Training etc.
CO2	Demonstrate HR function in adding value in business terms.
соз	Utilise soft factors in a people management context and convert them into measurable variables.
CO4	Design a Metrics and Analysis index for recruitment, performance and or a training and development context Applying
CO5	Predict the issues using the available HR data and formulate the best strategies.

	Mapping	of Course ou	tcomes with	Program or	utcomes					
		KMBN HR	03 – HR ANA	LYTICS						
		Program outcomes(PO)								
СО	PO1	PO2	PO3	PO4	PO5	PO6				
CO1	3	-	-	3	-	-				
CO2	3	÷	-	3	-	-				
СОЗ	3	3	2	3	-	2				
CO4	3	3	3	3	-	2				
CO5	3	3	3	3	-	2				
Average	3	3	2.7	3	•	2				





**DEPARTMENT OF MANAGEMENT** 

## KMBN HR 04 - Performance And Reward Management

СО	Course Outcomes
CO1	Knowledge of Performance Management and Performance Appraisal
CO2	Competency to understand the importance of importance of Performance Management
CO3	Knowledge about the Compensation and Reward Systems
CO4	Competency to implement the effective reward systems in the organization
CO5	Ability to explain the relevance of competency mapping and understanding its linkage with career development

N	lapping of	Course out	comes with	Program	outcome	S		
KI	MBN HR 04	4 – Perform	ance And R	eward Ma	nagemer	nt		
	Program outcomes(PO)							
со	PO1	PO2	PO3	PO4	PO5	PO6		
CO1	1	1	1	-	2	1		
CO2	2	1	1	5.	2	1		
соз	2	1	2	-	2	2		
CO4	1	1	1	÷.	2	2		
CO5	2	1.	2	÷	1	1		
Average	1.6	1	1.4	-	1.8	1.4		





**DEPARTMENT OF MANAGEMENT** 

## KMBN HR 05 - International Management

СО	Course Outcomes	
CO1	Understanding the Contexts of International HRM	
CO2	Knowledge about the HR Processes in International Context	
СОЗ	Able to evaluate the impacts of Globalization on HRM	
CO4	Desired level of expertise on organizational	
CO5	Understanding the International culture in SHRM	_

	Mapping	of Course ou	tcomes with	Program o	utcomes				
	КМІ	BN HR 05 – Ir	nternational	Manageme	nt				
	Program outcomes(PO)								
СО	PO1	PO2	PO3	PO4	PO5	PO6			
CO1	3	2	2	1	3	2			
CO2	3	2	2	1	2	2			
CO3	2	3	3	1	3	2			
CO4	2	2	2	2	1	2			
CO5	2	2	2	1	3	2			
Average	2.4	2.2	2.2	1.2	2.4	2			







DEPARTMENT OF MANAGEMENT

#### KMBN MK-03 - B2B And Services Marketing.

СО	Course Outcomes
CO1	Understand and nature of B2B marketing
CO2	Ability to create an integrated marketing communications plan which includes promotional strategies
CO3	Define and apply knowledge of various aspects of managerial decision making related to pricing strategy and tactics.
CO4	Be able to identify critical issues related to service design, such as identifying and managing customer service experience, expectations, perceptions and outcomes.
CO5	Use critical analysis to perceive service shortcomings in reference to ingredients to create service excellence.

	Mapping of	of Course ou	tcomes with	Program o	utcomes				
	КМВ	N MK-03 – B	2B And Servi	ces Market	ting				
	Program outcomes(PO)								
СО	PO1	PO2	PO3	PO4	PO5	PO6			
CO1	3	2	2	1	1	1			
CO2	3	2	3	1	2	2			
CO3	2	3	2	3	2	3			
CO4	3	2	3	1	2	3			
CO5	2	1	1	2	3	3			
Average	2.6	2	2.2	1.6	2	2.4			



Director College
R.D. Engineering Chaziabad
Duhai, Ghaziabad



**DEPARTMENT OF MANAGEMENT** 

## KMBN MK-04 - Sales And Retail Management.

СО	Course Outcomes
CO1	Students will develop knowledge, understanding and skills in Sales force management.
CO2	Acquainted with better understanding of implementation of sales management strategies.
соз	Develop analytical skills for effective decision alternatives in sales management problems
CO4	Develop the knowledge, understanding and skills in retail management.
CO5	Acquainted with better understanding of implementation of retail management strategies and develop analytical skills for effective decision alternatives in retail operations.

	Mapping	of Course ou	tcomes with	Program ou	ıtcomes				
	KMBI	N MK-04 – Sa	les And Reta	il Managem	ent	_			
		Program outcomes(PO)							
СО	PO1	PO2	PO3	PO4	PO5	PO6			
CO1	3	2	2	1	1	1			
CO2	3	2	2	1	1	1			
CO3	3	2	2	1	1	1			
CO4	3	2	2	1	1	1			
CO5	3	2	2	1	1	1			
Average	3	2	2	1	1	1			



Director College

Director College

R.D. Engineering
Ghaziabad

Duhai, Ghaziabad



**DEPARTMENT OF MANAGEMENT** 

## KMBN MK-05 - Social Media And Web Analytics.

СО	Course Outcomes
CO1	Students will develop knowledge, understanding and skills in analysis of Social Media
CO2	Acquainted with better understanding of implementation Web Analytics tool
CO3	Develop analytical skills for effective decision alternatives in social media problems
CO4	Develop the knowledge, understanding and skills in Facebook and google analytics.
CO5	Acquainted with better understanding of implementation of web analytics strategies and develop analytical skills for effective decision alternatives in social media operations.

	KMBN	MK-05 – Soci	ial Media An	d Web Ana	alytics			
	Program outcomes(PO)							
со	PO1	PO2	PO3	PO4	PO5	PO6		
CO1	3	2	2	1	1	1		
CO2	3	3	3	1	2	2		
СОЗ	2	3	2	1	2	3		
CO4	3	1	3	1	2	3		
CO5	2	1	1	2	3	3		
Average	2.6	2	2.2	1.2	2	2.4		







#### **DEPARTMENT OF MANAGEMENT**

#### KMBN FM-03 Financial Derivatives.

СО	Course Outcomes
CO1	Understand about various derivatives instruments and derivative Market structure
CO2	Understand the forward and future pricing mechanism and strategies for hedging using various futures products
CO3	Understand the option pricing mechanism and using options strategies for mitigating risk
CO4	Understand the Commodity derivative market
CO5	Understand the Swaps derivatives and their mechanism

	Mapping C	or course ou	tcomes with	i iogiani o	accomes					
	k	(MBN FM-03	Financial De	erivatives.						
		Program outcomes(PO)								
СО	PO1	PO2	PO3	PO4	PO5	PO6				
CO1	3	3	3	-	1	2				
CO2	3	3	3	-	1	2				
соз	3	3	3		3	2				
CO4	3	3	3	-	3	2				
CO5	3	3	3	-	3	2				
Average	3	3	3	-	2.2	2				







**DEPARTMENT OF MANAGEMENT** 

## KMBN FM-04 Foreign Exchange And Risk Management

СО	Course Outcomes	
CO1	Understand the BOP and evaluation various exchange rate system	
CO2	Understand the theories of exchange rate determination	
соз	Understand the foreign exchange transactions mechanism	
CO4	Understand the exchange dealings	
CO5	Understanding the various foreign exchange risk and its management	

	Mapping	of Course ou	tcomes with	Program ou	utcomes				
ΚN	IBN FM-0	4 Foreign E	xchange An	d Risk Ma	ınagemei	nt			
	Program outcomes(PO)								
СО	PO1	PO2	PO3	PO4	PO5	PO6			
CO1	3	*	-	1	2	2			
CO2	3	2	1	1	1	1			
соз	2	1	2	_	1	2			
CO4	2	1	1	1	1	1			
CO5	2	1	1	3	1	2			
Average	2.4	1.2	1.2	1.5	1.2	1.6			







**DEPARTMENT OF MANAGEMENT** 

#### KMBN FM-05 Financial And Credit Risk Analytics.

СО	Course Outcomes
CO1	Understand about various types of financial credit.
CO2	Understand the credit risk and its rating.
СОЗ	Understanding of credit commitments and its application
CO4	Understanding of risk management and corporate governance
CO5	Measure riskiness of a stock or a portfolio position.

	Mapping	of Course ou	tcomes with	Program o	utcomes				
	KMBN	FM-05 Financ	cial And Cred	it Risk Ana	lytics.				
	Program outcomes(PO)								
СО	PO1	PO2	PO3	PO4	PO5	PO6			
CO1	3	2	1	1	2	2			
CO2	2	2	2	-	2	2			
CO3	1	1	1	-	2	2			
CO4	2	2	2	-	2	2			
CO5	1	1	1	-	2	2			
Average	1.8	1.6	1.4	1	2	2			







**DEPARTMENT OF MANAGEMENT** 

## KMBN IT-03 Data Base Management System.

СО	Course Outcomes
CO1	Knowledge about the DBMS Technology
CO2	Understanding the business application of DBMS
СОЗ	Application of DBMS for business process
CO4	Knowledge and uses of Data mining techniques
CO5	Working knowledge of DBMS Software ORACLE

	Mapping	of Course ou	tcomes with	Program o	utcomes					
	KMBNI	T-03 Data E	Base Manag	gement Sy	stem.					
	Program outcomes(PO)									
СО	PO1	PO2	PO3	PO4	PO5	PO6				
CO1	1	1	-	1	2	1				
CO2	3	2	-	1	2	1				
CO3	2	1	-	-	2	2				
CO4	2	1	1	3	2	2				
CO5	2	1	1	3	2	2				
Average	2	1.2	1	2	2	1.6				





**DEPARTMENT OF MANAGEMENT** 

## **KMBN IT-04 Cloud Computing For Business**

СО	Course Outcomes
CO1	Describes the main concepts, key technologies, strengths and limitations of cloud computing.
CO2	Learn the enabling technologies that help in the development of cloud.
CO3	Develop the ability to understand and use the architecture cloud, service and delivery models.
CO4	Explain the core issues of cloud computing like cloud virtualization
CO5	To appreciate the emergence of cloud as the next generation computing paradigm.

	Mapping	of Course ou	tcomes with	Program o	utcomes					
	KMBN	IT-04 Cloud	d Computin	g For Bus	<u>iness</u>					
		Program outcomes(PO)								
СО	PO1	PO2	PO3	PO4	PO5	PO6				
CO1	1	1	2	1	1	-				
CO2	3	2	1 .	1	1	-				
соз	2	1	2	-	1	-				
CO4	2	1	1	3	2	-				
CO5	2	1	1	3	1					
Average	2	1.2	1.4	2	1.2	-				



Director College R.D. Engineering Ghaziabad Duhai, Ghaziabad



**DEPARTMENT OF MANAGEMENT** 

## KMBN IT-05 Business Data Warehousing & Data Mining

СО	Course Outcomes
CO1	Understanding of data warehousing and its functions
CO2	To identify the key processes of data warehousing and applications.
соз	To understand data mining basic concepts
CO4	To understand data mining techniques to solve problems in various disciplines
CO5	Compare and evaluate data mining techniques

Mapping of Course outcomes with Program outcomes  KMBN IT-05 Business Data Warehousing & Data Mining									
KMBN	IT-05 Bus	iness Data \	<i>N</i> arehousin	g & Data I	Mining				
	Program outcomes(PO)								
СО	PO1	PO2	PO3	PO4	PO5	PO6			
CO1	3	-	-	2	2	3			
CO2	3	Ey.	-	2	2	3			
CO3	2	2	3	-	2	3			
CO4	2	2	3	2	2	3			
CO5	3	2	3	2	2	3			
Average	2.6	2	3	2	2	3			



Director College

R.D. Engineering Ghaziabad

R.D. Duhai, Ghaziabad

# SAMPLE OF CO-PO MAPPING

# Department of MCA

#### Program Outcomes - MCA

- PO 1: Computational Knowledge: Apply knowledge of computing fundamentals, computing specialisation, mathematics, and domain knowledge appropriate for the computing specialisation to the abstraction and conceptualisation of computing models from defined problems and requirements.
- PO 2: Problem Analysis: Identify, formulate, research literature, and solve complex computing problems reaching substantiated conclusions using fundamental principles of mathematics, computing sciences, and relevant domain disciplines.
- PO 3: Design /Development of Solutions: Design and evaluate solutions for complex computing problems, and design and evaluate systems, components, or processes that meet specified needs with appropriate consideration for public health and safety, cultural, societal, and environmental considerations.
- PO 4: Conduct investigations of complex Computing problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- PO 5: Modern Tool Usage: Create, select, adapt and apply appropriate techniques, resources, and modern computing tools to complex computing activities, with an understanding of the limitations.
- **PO 6: Professional Ethics:** Understand and commit to professional ethics and cyber regulations, responsibilities, and norms of professional computing practices.
- **PO 7: Life-long Learning**: Recognise the need, and have the ability, to engage in independent learning for continual development as a computing professional.
- PO 8: Project management and finance: Demonstrate knowledge and understanding of the computing and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- PO 9: Communication Efficacy: Communicate effectively with the computing community, and with society at large, about complex computing activities by being able to comprehend and write effective reports, design documentation, make effective presentations, and give and understand clear instructions.
- PO 10: Societal and Environmental Concern: Understand and assess societal, environmental, health, safety, legal, and cultural issues within local and global contexts, and the consequential responsibilities relevant to professional computing practices.
- PO 11: Individual and Team Work: Function effectively as an individual and as a member or leader in diverse teams and in multidisciplinary environments.
- PO 12: Innovation and Entrepreneurship: Identify a timely opportunity and using innovation to pursue that opportunity to create value and wealth for the betterment of the individual and society at large. Program Specific Outcomes MCA

COs to be mapped with POs in Matrix from.

arrelation levels 1,2,3 as defined (1: low, 2:Moderate, 3: High).

will be mapped with POs on the basis of above-mentioned levels.

off there is no correlation, put "-" or left blank or put zero.

#### MCA (MASTER OF COMPUTER APPLICATION) MCA FIRST YEAR, 2020-21

#### SEMESTER-I

S.No	Subject	Subject Name	Per	riods			Session	nal	ESE	Total	Credit
	Code		L	T	P	CT	TA	Total			
1.	KCA101	Fundamental of Computers & Emerging Technologies	3	0	0	30	20	50	100	150	3
2.	KCA102	Problem Solving using C	3	1	0	30	20	50	100	150	4
3.	KCA103	Principles of Management & Communication	3	0	0	30	20	50	100	150	3
4.	KCA104	Discrete Mathematics	3	0	0	30	20	50	100	150	3
5.	KCA105	Computer Organization & Architecture	3	1	0	30	20	50	100	150	4
6.	KCA151	Problem Solving using C	0	0	4	30	20	50	50	100	2
7.	KCA152	Computer Organization & Architecture Lab	0	0	3	30	20	50	50	100	2
8.	KCA153	Professional Communication Lab	0	0	2	30	20	50	50	100	2
		Total								1050	23

CT: Class Test TA: Teacher Assessment

L/T/P: Lecture/ Tutorial/ Practical

#### SEMESTER-II

S.No	Subject	Subject Name	Per	iods			Session	nal	ESE	Total	Credit
•	Code		L	T	P	CT	TA	Total			
1.	KCA201	Theory of Automata & Formal Languages	3	0	0	30	20	50	100	150	3
2.	KCA202	Object Oriented Programming	3	1	0	30	20	50	100	150	4
3.	KCA203	Operating Systems	3	0	0	30	20	50	100	150	3
4.	KCA204	Database Management Systems	3	0	0	30	20	50	100	150	3
5.	KCA205	Data Structures & Analysis of Algorithms	3	1	0	30	20	50	100	150	4
6.	KCAA01	Cyber Security*	2	0	0	30	20	50	100	150	0
7.	KCA251	Object Oriented Programming  Lab	0	0	3	30	20	50	50	100	2
8.	KCA252	DBMS Lab	0	0	3	30	20	50	50	100	2
9.	KCA253	Data Structures & Analysis of Algorithms Lab	0	0	4	30	20	50	50	100	2
		Total								1200	23

CT: Class Test TA: Teacher Assessment

L/T/P: Lecture/ Tutorial/ Practical

AICTE Madel Curriculum based Evaluation Scheme & Syllabus (I & II) 2020-21 Page 2

^{*} Qualifying Non-credit Course

## MASTER OF COMPUTER APPLICATION (MCA) MCA SECOND YEAR, 2021-22

#### SEMESTER-III

S. No.	Subject	Subject Name	Per	riods		,	Session	nal	ESE	Total	Credit
	Code		L	T	P	CT	TA	Total			
1.	KCA301	Artificial Intelligence	3	0	0 0	30	20	50	100	150	3
2.	KCA302	Software Engineering	4	0	0	30	20	50	100	150	4
3.	KCA303	Computer Network	3	1	0	30	20	50	100	150	4
4.		Elective – 1	3	0	0	30	20	50	100	150	3
5.		Elective – 2	3	1	0	30	20	50	100	150	3
6.	KCA351	Artificial Intelligence Lab	0	0	3	30	20	50	50	100	2
7.		Software Engineering Lab	0	0	3	30	20	50	50	100	2
8.	KCA353	Mini Project**	0	0	4	30	20	50	50	100	2
		Total								1050	23

CT: Class Test TA: Teacher Assessment

L/T/P: Lecture/ Tutorial/ Practical

#### SEMESTER-IV

S. No.	Subject Code	Subject Name	Periods				Session	ıal	ESE	Total	Credit
			L	T	P	CT	TA	Total			
1.		Elective – 3	3	0	0	30	20	50	100	150	3
2.		Elective – 4	3	0	0	30	20	50	100	150	3
3.		Elective – 5	3	0	0	30	20	50	100	150	3
4.	KCA451	Project	-	-	-		200	200	500	700	14
		Total						1		1050	23

CT: Class Test TA: Teacher Assessment

L/T/P: Lecture/ Tutorial/ Practical

** The Mini Project (6 weeks) conducted during summer break after II semester and will be assessed during III semester. The Course will be carried out at the Institute under the guidance of a Faculty Members.

Elective-1	KCA011	Cryptography & Network Security
	KCA012	Data Warehousing & Data Mining
	KCA013	Software Project Management
	KCA014	Cloud Computing
	KCA015	Compiler Design

Elective-2	KCA021	Web Technology
	KCA022	Big Data
	KCA023	Simulation & Modeling
	KCA024	Software Testing & Quality Assurance
	KCA025	Digital Image Processing

Curriculum & Evaluation Scheme MCA(III & IV semester)

Page 2

Director

R.D. Engineering College



#### DEPARTMENT OF MASTER OF COMPUTER APPLICATION AVERAGE OF PROGRAM OUTCOMES (2022-2023)

			Cubinstall she With Codes					Pro	ogram O	utcomes					
S.N.	YEAR	SEMESTER	Subjects/Labs With Codes	P01	PO2	PO3	P04	P05	P06	P07	PO8	PO9	PO10	PO11	PO12
			Fundamental of Computers & Emerging Technologies (KCA101)	3.00	2.00	1.00	2.33	2.25	-	1.33	-	*	1.00	1.00	25.0
	Sale I	1	Problem Solving using C (KCA102)	3.00	2.20	-	-	-	- :	2.20		2.00	(#)	1.00	1.00
		SEMESTER	Principles of Management & Communication(KCA 103)	_	-	-	-	-	-	1.60	-	3.00	•	2.00	-
	69	8	Discrete Mathematics(KCA 104)	3.00	2.00	-	-	-	-	1.60	_	-	-	-	-
4	st Y		Computer Organization & Architecture(KCA 105)	3.00	1.00	-	-	-	-	1.00		-	-	-	-
•	-		THEORY OF AUTOMATA & FORMAL LANGUAGES (KCA201)	1.00	1.50	1.50	1.67	1.25	•	-	-	-	-	-	1.00
	MCA	MESTER	OBJECT ORIENTED PROGRAMMING (KCA 202)	1.60	2.20	2.20	2.00	1.00	1.00	1.50	1.00	-	242		-
		IMES	OPERATING SYSTEMS (KCA 203)	1.80	1.50	1.50	1.00	-	-	-	-		-	-	1.60
		= S	DATABASE MANAGEMENT SYSTEMS (KCA 204)	2.83	2.67	2.33	2.33	1.50	1.50	1.00	1.00	1.00	1.00	1.00	2.00
			DATA STRUCTURES & ANALYSIS OF ALGORITHMS (KCA 205)	2.50	2.50	2.00	1.67	1.00	-	-		_	-	*	2.17
			ARTIFICIAL INTELLIGENCE (KCA 301)	3.00	3.00	•	2.25	2.00	-	-	-	_		#2 	-
		TER.	SOFTWARE ENGINEERING (KCA 302)	3.00	2.25		1.33	-	1.00	2.00	2.00	2.00	_	_	-
	ear	SEMESTER	COMPUTER NETWORK (KCA 303)	2.60	1.50	-	-	-	1.00	1.40	-	-	-	-	
•	>	<b>S</b>	CLOUD COMPUTING (KCA 014)	2.80	2.00	2.40	3.00	3.00	1.50	2.40	1.25	1.20	1.40	2.60	2.00
2	A 2nd		WEB TECHNOLOGY (KCA 021)	-		1.40	9	1.60	-	1.80	-	-	12	2	1.80
	MCA	ESTER	INTERNET OF THINGS (KCA 043)	2.40	2.40	2.00	1.00	1.60	9	- 8	1.00	-	-	-	2.20
		E E	MOBILE COMPUTING (KCA 051)	2.60	2.60	2.50	2.50	2.00	2.00	1.00	-	1.00	•	1.50	2.60
		<b>Ø</b> ≥	SOFTWARE QUALITY ENGINEERING (KCA 035)	2.40	2.40	1.40	-	1.60	-5	1.80	•	*	-	(*)	1.80
	AVE	RAGE		2.53	2.11	1.84	1.92	1.71	1.33	1.59	1.25	1.70	1.13	1.52	1.82



ACTIO	R.D. ENGINEER  DEPARTMENT OF MAST ON TAKEN ON IDENTIFIE		PPLICATION
S.N.	Gap Identified	Relevent PO	Action Taken
	No Gap Identified		
		, ,	

a





#### **COURSE OUTCOME (2022-23)**

#### KCA201: THEORY OF AUTOMATA & FORMAL LANGUAGES

CO	CO Statement
CO1	Define various types of automata for different classes of formal languages and explain their working.
CO2	State and prove key properties of formal languages and automata.
CO3	Construct appropriate formal notations (such as grammars, acceptors, transducers and regular expressions) for given formal languages.
CO4	Convert among equivalent notations for formal languages.
CO5	Explain the significance of the Universal Turing machine, Church- Turing thesis and concept of Undecidability.

		Ma	pping o	of Cour	se Outo	omes w	ith Pro	gram (	Outcom	es		
	]	KCA201:	THEO	RY OF	AUTO	MATA	& FO	RMAL	LANG	UAGES		
PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
co												
CO1	1	1	-	-	1	SS-	-	-	-	-	-	1
CO2	1	2	2	-	.=	-	-	-	-	-	-	1
CO3	1	-	1	2	1	-	-	-	-	-	-	1
CO4	1	2	1	1	1	-	-	-	-	-	-	1
CO5	1	1	2	2	2	-	-	==	-	-	-	1
Average	1	1.50	1.50	1.67	1.25	-	-	-	-	-	•	1





#### **COURSE OUTCOME (2022-23)**

#### KCA202: OBJECT ORIENTED PROGRAMMING

CO	CO Statement
CO1	List the significance and key features of object oriented programming and modeling using UML
CO2	Construct basic structural, behavioral and architectural models using object oriented software engineering approach.
CO3	Integrate object oriented modeling techniques for analysis and design of a system.
CO4	Use the basic features of data abstraction and encapsulation in C++ programs.
CO5	Use the advanced features such as Inheritance, polymorphism and virtual function in C++ programs.

		Ma	pping o	f Cour	se Outo	omes w	vith Pro	gram (	Outcom	es		•
		K	CA202	: OBJE	CT OF	RIENTI	ED PRO	OGRA	MMINO	G		
PO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	1	2	1	1	1	1	(=)	-	-	-
CO2	2	2	2	2	1	1	2	-	-	:-	- I	-
CO3	2	3	2	2	1	1	1	-	-	-	-	-
CO4	1	2	3	2	1	1	-	1	-	•	- 1	-
CO5	1	2	3	2	1	1	2	1	-	72	-	-
Average	1.6	2.2	2.2	2	1	1	1.5	1	-	28	•	-





#### **COURSE OUTCOME (2022-23)**

KCA203: OPERATING SYSTEMS

CO	CO Statement
CO1	Explain main components, services, types and structure of Operating Systems.
CO2	Apply the various algorithms and techniques to handle the various concurrency control issues.
CO3	Compare and apply various CPU scheduling algorithms for process execution.
CO4	Identify occurrence of deadlock and describe ways to handle it.
CO5	Explain and apply various memory, I/O and disk management techniques.

		Ma	pping o	of Cour	se Outo	comes v	vith Pro	gram (	Outcom	es		
	KCA203: OPERATING SYSTEMS											
PO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	-	-	-	2.5	-	-	-	-	-	-	1
CO2	2	1	1	-	-	-	-	-	-	-	-	2
CO3	2	2	2	1	-	-	-	-	-	-	-	2
CO4	2	1	1	-	-	-	-	-	-	<b>%</b> -	7-	1
CO5	2	2	2	1	( <del>-</del>	-	-	-	-	7-	-	2
Average	1.80	1.50	1.50	1	10 <del>775</del>	-	-	-	-	-	<del>.</del>	1.60





#### COURSE OUTCOME (2022-23)

#### KCA204: DATABASE MANAGEMENT SYSTEMS

CO	CO Statement
CO1	Describe the features of a database system and its application and compare various types of data models.
CO2	Construct an ER Model for a given problem and transform it into a relation database schema.
CO3	Formulate solution to a query problem using SQL Commands, relational algebra, tuple calculus and domain calculus.
CO4	Explain the need of normalization and normalize a given relation to the desired normal form.
CO5	Explain different approaches of transaction processing and concurrency control.

		Ma	pping o	of Cour	se Outo	comes w	vith Pro	gram (	Outcom	es		
KCA204: DATABASE MANAGEMENT SYSTEMS												
\ PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
co												
CO1	2	2	1	1	1	1	1	1	-	-	(=	1
CO2	3	3	3	3	2	2	-	1	1	1	1	2
CO3	3	3	3	3	2	2		1	1	1	1	3
CO4	3	3	3	3	2	2	1	1	1	1	1	3
CO5	3	3	2	2	1	1	1	1				2
Average	2.83	2.67	2.33	2.33	1.5	1.5	1	1	1	1	1	2
Average	2.83	2.67	2.33	2.33	1.5	1.5	1	1	1	1	1	





#### COURSE OUTCOME (2022-23)

#### KCA205: DATA STRUCTURES & ANALYSIS OF ALGORITHMS

CO	CO Statement
CO1	Explain the concept of data structure, abstract data types, algorithms, analysis of algorithms and basic data organization schemes such as arrays and linked lists.
CO2	Describe the applications of stacks and queues and implement various operations on them using arrays and linked lists.
CO3	Describe the properties of graphs and trees and implement various operations such as searching and traversal on them.
CO4	Compare incremental and divide-and-conquer approaches of designing algorithms for problems such as sorting and searching.
CO5	Apply and analyze various design approaches such as Divide-and-Conquer, greedy and dynamic for problem solving.

		Ma	pping o	of Cour	se Outo	omes v	vith Pro	gram (	Outcom	es			
	KCA205: DATA STRUCTURES & ANALYSIS OF ALGORITHMS												
PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO CO1	3	3	2	2	-	-	-	-	-	-	-	2	
CO2	3	3	2	2	-	-	-	-	-	-	-	3	
CO3	2	2	2	2	-	- 1	-	-	-	-	-	2	
CO4	2	2	2	1	1	- E-1	-	-	-	-	÷	2	
CO5	2	2	2	1	1	-	-	-	-	12	-	2	
Average	2.50	2.50	2	1.67	1	-	-	-	-	n <u>u</u>	-	2.17	





#### **COURSE OUTCOME (2022-23)**

#### KCAA01: CYBER SECURITY

CO	CO Statement
CO1	Identify and analyze nature & inherent difficulties in the security of theInformation System
CO2	Analyze various threats and attacks, corresponding counter measures and various vulnerability assessment and security techniques in an organization.
CO3	Applications of cyber based policies and use of IPR and patent law for software-based design. Define E-commerce types and threats to E-commerce.
CO4	Explain concepts and theories of networking and apply them to various situations, classifying networks, analyzing performance.

		Ma	apping o	of Cour	se Outo	omes w	vith Pro	gram (	Outcom	es		
	KCAA01: CYBER SECURITY											
PO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	1	1	3	3	1	3	-	1	-	3
CO2	2	2	1	1	-	3	1	3	-	1	•	3
CO3	2	2	1	1	.=.	3	1	3	-	1	-	3
CO4	2	2	1	1	3	3	1	3	-	1	-	3
Average	2	2	1	1	3	3	1	3	-	1		3





#### COURSE OUTCOME (2022-23)

#### KCA251:OBJECT ORIENTED PROGRAMMING LAB

CO	CO Statement
CO1	Use the Concept of Data Abstraction and Encapsulation in C++programs.
CO2	Design and Develop C++ program using the concept such aspolymorphism, virtual function, exception handling and template.
CO3	Apply object oriented techniques to analyze, design and develop acomplete solution for a given problem.

		Ma	pping o	of Cour	se Outo	omes w	vith Pro	gram (	Outcom	es		
		KC	A251:O	BJECT	ORIE	NTED	PROG	RAMM	IING L	AB		
PO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	1	2	1	1	1	1	-	-	-	-
CO2	2	2	2	2	1	1	2		-	-	-	-
CO3	2	3	2	2	1	1	1	-	-	-	-	-
Average	2	2.33	1.66	2	1	1	1.33	1	-	120	-	-





#### **COURSE OUTCOME (2022-23)**

#### KCA252: DATABASE MANAGEMENT SYSTEMS LAB

CO	CO Statement
CO1	Use the Concept of Data Abstraction and Encapsulation in C++programs.
CO2	Write SQL commands to query a database.
CO3	Write PL/SQL programs for implementing stored procedures, storedfunctions, cursors, trigger and packages.

		Ma	pping o	of Cour	se Outo	comes v	vith Pro	gram (	Outcom	es		
		KCA	252: D	ATABA	ASE M	ANAGI	EMENT	r syst	EMS L	AB		
PO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1	-	1.5	-	-	150	1	u <del>r.</del>	-	-	1
CO2	3	3	2	2	2	2	1	1	1	1	1	3
CO3	3	3	3	3	2	-	1	-	-	-	1	3
Average	2.66	2.33	2.5	2.5	2	2	1	1	1	1	1	2.33





#### **COURSE OUTCOME (2022-23)**

#### KCA253:DATA STRUCTURES & ANALYSIS OF ALGORITHMS LAB

CO	CO Statement
CO1	Write and execute programs to implement various searching andsorting algorithms.
CO2	Write and execute programs to implement various operations ontwo-dimensional arrays.
CO3	Implement various operations of Stacks and Queues using botharrays and linked lists data structures.
CO4	Implement graph algorithm to solve the problem of minimum spanning tree

		Ma	pping	of Cours	se Outo	omes w	ith Pro	gram (	Outcom	es			
	KCA253:DATA STRUCTURES & ANALYSIS OF ALGORITHMS LAB												
PO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	3	2	2	-	-	-	-	-	-	-	2	
CO2	3	3	2	2	-	-	-	-	-	-	-	3	
CO3	2	2	2	2	-	-8	-	-	-	-	-	2	
CO4	2	2	2	1	1	-	-		-	1-	-	2	
Average	2.5	2.5	2	1.75	1	-	•	-	-	-	-	2.25	





#### **COURSE OUTCOME (2020-21)**

#### KCA101: FUNDAMENTAL OF COMPUTERS & EMERGING TECHNOLOGIES

CO	CO Statement
CO1	Demonstrate the knowledge of the basic structure, components, features and generations of computers.
CO2	Describe the concept of computer languages, language translators and construct algorithms to solve problems using programming concepts.
CO3	Compare and contrast features, functioning & types of operating system and computer networks
CO4	Demonstrate architecture, functioning & services of the Internet and basics of multimedia.
CO5	Illustrate the emerging trends and technologies in the field of Information Technology.

		Ma	pping o	f Cours	se Outc	omes w	ith Pro	gram (	Outcom	es		
K	CA101	: FUND	AMENT	AL OF	COM	PUTEF	RS & EI	MERG	ING TI	ECHNO	LOGIES	8
PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
co												
CO1	3	2	(12)		2	-	1-1				-	-
CO2	3	-	-		-	-	-	-	-	-	-	-
CO3	3	-	1	2	2	-	1	-	-	1	1	-
CO4	3	-	-	2	2	-	1	-	-	-	-	-
CO5	3	-	1	3	3	-	2	-	-	1	•	-
Average	3	2	1	2.33	2.25	-	1.33	-	-	1	1	-





#### **COURSE OUTCOME (2022-23)**

#### KCA102 :PROBLEM SOLVING USING C

CO	CO Statement
CO1	Describe the functional components and fundamental concepts of a digital computer system including number systems.
CO2	Construct flowchart and write algorithms for solving basic problems.
CO3	Write 'C' programs that incorporate use of variables, operators and expressions along with data types.
CO4	Write simple programs using the basic elements like control statements, functions, arrays and strings.
CO5	Write advanced programs using the concepts of pointers, structures, unions and enumerated data types.

	Ma	apping o	of Cour	se Outo	comes v	vith Pro	gram (	Outcom	es		
KCA102 :PROBLEM SOLVING USING C											
PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
3	3	-	-	.=	-	3	-	2	-	1	1
3	2	-	-	-	-	2	-	-		1	1
3	2	-	-	-	-	2		-	-	1	1
3	2		-	-	-	2	-	-	-	1	1
3	2	-	-	-	-	2	-	-	-	1	1
3	2.2		-	- 000	-	2.2	7=3	2	-	1	1
	3 3 3 3	PO1 PO2  3 3 3 3 2 3 2 3 2 3 2	RCA PO1 PO2 PO3  3 3 - 3 2 - 3 2 - 3 2 - 3 2 - 3 2 -	PO1     PO2     PO3     PO4       3     3     -     -       3     2     -     -       3     2     -     -       3     2     -     -       3     2     -     -       3     2     -     -       3     2     -     -       3     2     -     -       3     2     -     -	KCA102 :PROBLI         PO1       PO2       PO3       PO4       PO5         3       3       -       -       -         3       2       -       -       -         3       2       -       -       -         3       2       -       -       -         3       2       -       -       -         3       2       -       -       -         3       2       -       -       -         3       2       -       -       -	KCA102 :PROBLEM SO         PO1       PO2       PO3       PO4       PO5       PO6         3       3       -       -       -       -         3       2       -       -       -       -         3       2       -       -       -       -         3       2       -       -       -       -         3       2       -       -       -       -         3       2       -       -       -       -         3       2       -       -       -       -         3       2       -       -       -       -	KCA102 :PROBLEM SOLVING         PO1       PO2       PO3       PO4       PO5       PO6       PO7         3       3       -       -       -       -       3         3       2       -       -       -       2         3       2       -       -       -       2         3       2       -       -       -       2         3       2       -       -       -       2         3       2       -       -       -       2         3       2       -       -       -       2         3       2       -       -       -       2	KCA102 :PROBLEM SOLVING USING         PO1       PO2       PO3       PO4       PO5       PO6       PO7       PO8         3       3       -       -       -       -       3       -         3       2       -       -       -       2       -         3       2       -       -       -       2       -         3       2       -       -       -       2       -         3       2       -       -       -       2       -         3       2       -       -       -       2       -         3       2       -       -       -       2       -         3       2       -       -       -       2       -         3       2       -       -       -       2       -	KCA102 :PROBLEM SOLVING USING C         PO1       PO2       PO3       PO4       PO5       PO6       PO7       PO8       PO9         3       3       -       -       -       -       3       -       2         3       2       -       -       -       2       -       -         3       2       -       -       -       2       -       -         3       2       -       -       -       2       -       -         3       2       -       -       -       2       -       -         3       2       -       -       -       2       -       -         3       2       -       -       -       2       -       -         3       2       -       -       -       2       -       -	PO1         PO2         PO3         PO4         PO5         PO6         PO7         PO8         PO9         PO10           3         3         -         -         -         -         2         -           3         2         -         -         -         2         -         -           3         2         -         -         -         2         -         -         -           3         2         -         -         -         2         -         -         -           3         2         -         -         -         2         -         -         -           3         2         -         -         -         2         -         -         -           3         2         -         -         -         2         -         -         -           3         2         -         -         -         2         -         -         -	KCA102 :PROBLEM SOLVING USING C           PO1         PO2         PO3         PO4         PO5         PO6         PO7         PO8         PO9         PO10         PO11           3         3         -         -         -         3         -         2         -         1           3         2         -         -         -         2         -         -         1           3         2         -         -         -         2         -         -         1           3         2         -         -         -         2         -         -         1           3         2         -         -         -         2         -         -         1           3         2         -         -         -         2         -         -         1           3         2         -         -         -         2         -         -         1           3         2         -         -         -         2         -         -         -         1           3         2         -         -         -         2         -





### **COURSE OUTCOME (2020-21)**

#### KCA103: Principles of Management & Communication

CO	CO Statement
CO1	Describe primary features, processes and principles of management.
CO2	Explain functions of management in terms of planning, decision making and organizing.
C <b>O</b> 3	Illustrate key factors of leadership skill in directing and controlling business resources and processes.
C <b>O</b> 4	Exhibit adequate verbal and non-verbal communication skills
CO5	Demonstrate effective discussion, presentation and writing skills.

		Ma	pping o	f Cour	se Outc	omes w	ith Pro	gram (	Outcom	es			
	KCA103: Principles of Management & Communication												
PO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	-	:-	-	-	-	-	1	-	-	-	2	-	
CO2	-	-		15	-	-	1	-	-	-	2		
CO3	-	-	_	-	-	- :	2	-	-		2	-	
CO4	-	_	-	-		-	2	-	3	-	2	-	
CO5	-	-	-	1-	-	-	2	-	3	-	2	-	
Average	-	-	-	-	9. <del>-</del> 9:	-	1.6	-	3	n <b>-</b> 0	2	-	





### **COURSE OUTCOME (2020-21)**

#### **KCA104**: Discrete Mathematics

CO	CO Statement
CO1	Use mathematical and logical notation to define and formally reason about basic discrete structures such as Sets, Relations and Functions
CO2	Apply mathematical arguments using logical connectives and quantifiers to check the
CO3	Identify and prove properties of Algebraic Structures like Groups, Rings and Fields
CO4	Formulate and solve recurrences and recursive functions
CO5	Apply the concept of combinatorics to solve basic problems in discrete mathematics

		Ma	pping o	f Cour	se Outc	omes w	ith Pro	gram (	Outcom	es			
	KCA104: Discrete Mathematics												
\ PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
co													
CO1	3	2	-	-	-	-	-	-	-	_	n=	-	
CO2	3	2	-	-	-	-	2	-	-	-	-	-	
CO3	3	2	-	-	-	-	-	-	-	-	•	-	
CO4	3	2	-	- 1		-	1	1.7	-	-	-	-	
CO5	3	2	-	-	-	-	2	-	84	-	-	-	
Average	3	2	-	-	-	-	1.6	-	-	-		-	





### **COURSE OUTCOME (2020-21)**

### KCA105: COMPUTER ORGANIZATION & ARCHITECTURE

CO	CO Statement
CO1	Describe functional units of digital system and explain how arithmetic and logical operations are performed by computers
CO2	Describe the operations of control unit and write sequence of instructions for carrying out simple operation using various addressing modes.
CO3	Design various types of memory and its organization.
CO4	Describe the various modes in which IO devices communicate with CPU and memory.
CO5	List the criteria for classification of parallel computer and describe various architectural schemes.

		Ma	apping o	of Cours	se Outc	omes w	ith Pro	gram (	Outcom	es		
		KCA105	S: COM	[PUTE]	R ORG	ANIZA	TION	& ARC	CHITE	CTURE		
PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
co												
CO1	3	1	-	-	-	-	1	-	-	-	-	-
CO2	3	1	-	-	0.7	-	1	-	-	-	-	•
CO3	3	1	-	-	-	-	1	-	-	1	7	-
CO4	3	1	-	-	-	-	1	-	-	Œ	-	-
CO5	3	1	-	-	-		1	1-1	-	-	-	-
Average	3	1	-	-	-	-	1	-	-	-	-	-





### **COURSE OUTCOME (2020-21)**

#### KCA151: PROBLEM SOLVING USING C LAB

CO	CO Statement
CO1	Write, compile, debug and execute programs in a C programmingenvironment.
CO2	Write programs that incorporate use of variables, operators and expressions along with data types.
CO3	Write programs for solving problems involving use of decision controlstructures and loops.
CO4	Write programs that involve the use of arrays, structures and userdefined functions.
CO5	Write programs using graphics and file handling operations.

117		Ma	apping o	f Cour	se Outc	omes w	ith Pro	gram (	Outcom	es		
			KCA15	1: PRC	BLEM	SOLV	ING U	SING (	LAB			
PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
co					1							
CO1	-	2	-	-	-	-	1	-	-	-	1	1
CO2	3	2	-	-	-	-	2	-	-	-	1	1
CO3	3	2	1-	-		-	2	-	-	i <del></del> :	1	1
CO4	3	2	-	-	-	-	2	-	-	-	1	1
CO5	3	2		-	-	-	2	-	-	-	1	1
Average	3	2	-	-	-	s <del>-</del>	1.8	-	-	-	1	1





## COURSE OUTCOME (2020-21)

### KCA152: COMPUTER ORGANIZATION & ARCHITECTURE LAB

CO	CO Statement
CO1	Design and verify combinational circuits (adder, code converter, decoder, multiplexer) using basic gates.
CO2	Design and verify various flip-flops.
CO3	Design I/O system and ALU.
CO4	Demonstrate combinational circuit using simulator

			pping o									
	K	CA152: 0	COMPL	TER C	RGAN	IZATI	ON &	ARCHI	TECT	URE LA	В	
PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	-	-	-	2	-	-	-	-	-
CO2	3	2	-	-	-	-	1	-	-	-	-	-
CO3	3	2	-	:: <del>=</del>	-	-	1	-	-	-	-	-
CO4	3	2	-	/ <del>=</del>	•	-	1	-	-	-	-	-
Average	3	2	-	-	-	-	1	y. <b>-</b>	-	-	-	-





#### **COURSE OUTCOME (2020-21)**

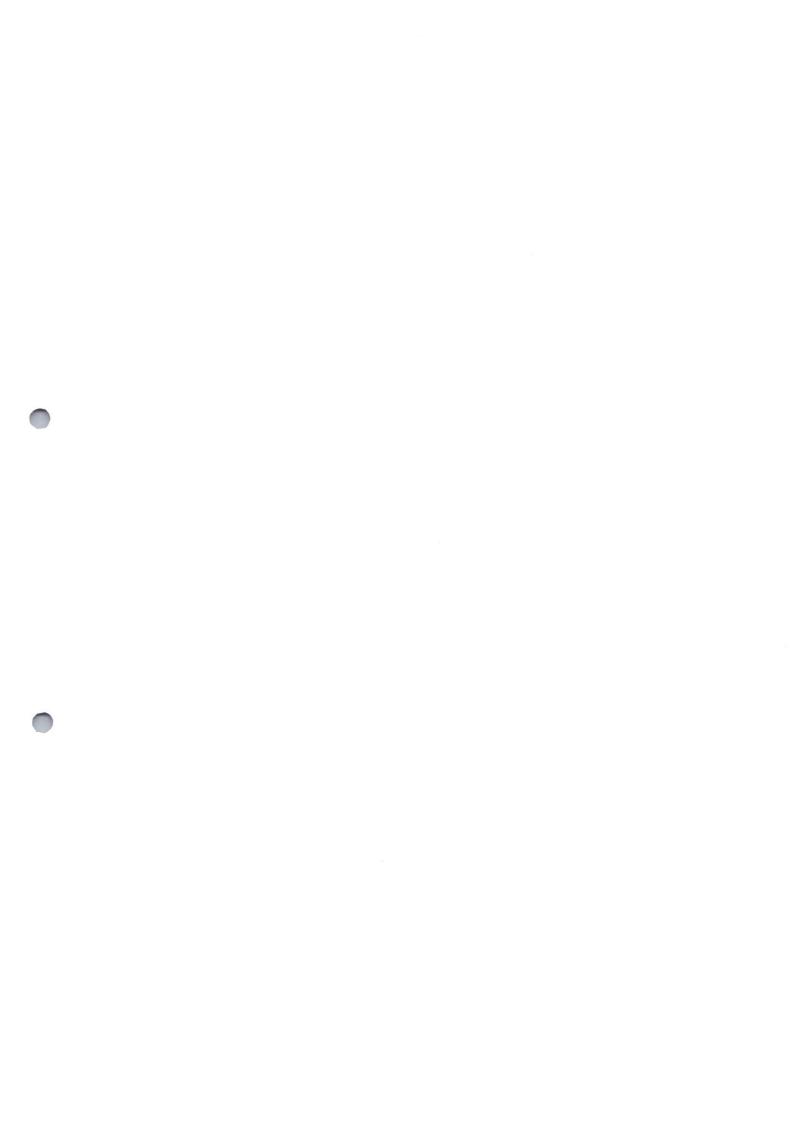
### KCA153: PROFESSIONAL COMMUNICATION LAB

CO	CO Statement
CO1	Develop the ability to work as a team member as an integral activity in the workplace.
CO2	Increase confidence in their ability to read, comprehend, organize, andretain writter information. Improve reading fluency.
CO3	Write coherent speech outlines that demonstrate their ability to use organizational formats with a specific purpose; Deliver effective speeches that are consistent with and appropriate for the audience and purpose.
CO4	Develop proper listening skills; articulate and enunciate words andsentences clearly and efficiently.
CO5	Show confidence and clarity in public speaking projects; be schooledinpreparation and research skills for oral presentations.

							0	)utcom				
KCA153: PROFESSIONAL COMMUNICATION LAB												
PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
-	-	-	-	-	-	3	-	3	-	-	-	
-	-	) <u>-</u>	-	-	-	3	-	3	-	-	:=:	
-	-	-	-	-	-	3	-	3	-	7-1	-	
-	-	-	-	-	-	3	-	3	-	-	-	
•	-	-	-	-	-	3	-	3	-	-	-	
	<del> </del>	-	-	-	-	3	-	3	-	-	-	
]	- - - -		  	  			3 3 3 3 3	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	3 - 3 3 - 3 3 - 3 3 - 3 3 - 3 3 - 3	3 - 3 3	3 - 3	






## COURSE OUTCOME (2020-21)

### RCA501: COMPUTER GRAPHICS & ANIMATION

Demonstrate computer graphics algorithms for image creation and filling Express the fundamentals of animation and its techniques.  Practice the concepts of graphics related to clipping and transformation
Express the fundamentals of animation and its techniques.  Practice the concepts of graphics related to clipping and transformation
Practice the concepts of graphics related to clipping and transformation
Illustrate the theory of projection and visible surface detection.
Analyze illumination models and three-dimensional curves.

		Ma	pping o	f Cours	se Outc	omes w	ith Pro	gram (	Jucom	es		
		RO	CA501:	COMP	UTER	GRAP	HICS &	& ANIN	ИАТІО	N		,
PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
co											7-	
C01	3	3	1	1	1	-	l	-	-			
CO2	-	-	-	-	2	-	1	-	-	-	-	-
CO3	-	3	-	2	1	-	-	-	-		-	-
CO4		3	-	2	2	-	-	-	-	-	-	-
CO5	3	3	1	1	1	-	1	-	-	-	1	-
Average	3	3	1	1.5	1.4	-	1	-	-	-	1	-







### COURSE OUTCOME (2020-21)

#### **RCA502: SOFTWARE ENGINEERING**

CO	CO Statement
CO1	Describe Software Engineering Concepts and SDLC models.
CO2	Prepare Software Requirement Specification (SRS) with Modelling tools and Quality standards.
CO3	Analyse design concepts to software development with software metrics methods.
CO4	Categorize software testing techniques and its implementation.
CO5	Contrast Software project management activities with its parameters such as Cost, Efforts, Schedule/ Duration.

		Ma	apping o	of Cour	se Outo	omes w	vith Pro	gram (	Outcom	es				
	RCA502: SOFTWARE ENGINEERING													
PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	3	2	-	-	-	-	-	-	-	-	-	-		
CO2	3	2	:=.	1	-8	1	2	-	2	-	-	-		
CO3	3	3	-	2	-	-	-	-	2	-	-	-		
CO4	3	-		-	-	-	2	-	98	-	-	-		
CO5	3	2	22	1		-	-	2	-	-	-	-		
Average	3	2.2		1.3	-1	1	2	2	2	- 1	-	-		





### **COURSE OUTCOME (2020-21)**

#### **RCA-E35: DISTRIBUTED SYSTEMS**

CO	CO Statement
CO1	Demonstrate knowledge of the basic elements and core architectural aspects of distributed systems
CO2	Apply appropriate distributed system principles in ensuring transparency, consistency and fault tolerance in distributed file systems.
CO3	Analyze different client server communication models and their practical applications
CO4	Compare the different process synchronization algorithms and its application in real time systems.

	Mapping of Course Outcomes with Program Outcomes													
	RCA-E35: DISTRIBUTED SYSTEMS													
PO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	3	3	3	2	3	3	3	-	-	=:		3		
CO2	3	3	3	3	3	3	3	3	-	-		3		
CO3	3	3	3	2	2	•	3	-	-	-	-	3		
CO4	2	3	3	3	2	-	3	-	-	-	•	3		
Average	2.75	3	3	2.5	2.5	3	3	3	-	<u>4</u> 9	2	3		





### **COURSE OUTCOME (2020-21)**

#### **RCA-E44: PATTERN RECOGNITION**

CO	CO Statement
CO1	Explain the Basics of Probability, Random Processes and Linear Algebra and define concepts of pattern recognition.
CO2	Summarize, analyze, and discuss the Mathematical foundation of Statistical Pattern Recognition and Linear discriminant functions in the arena of pattern recognition.
CO3	Apply performance evaluation methods Parameter estimation methods and Sequential Pattern Recognition for pattern recognition.
CO4	Apply pattern recognition Nonparametric Techniques to real-world problems such as document analysis and recognition.
CO5	Implement simple Unsupervised Learning & Clustering techniques such as pattern classifiers, classifier combinations.

		Ma	pping o	of Cour	se Outo	omes v	ith Pro	gram (	Outcom	es			
-	RCA-E44: PATTERN RECOGNITION												
PO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	2	1	-	2	-	1	1	-	-	-8	-0	-	
CO2	3	2	-	2	y <del>=</del>	2	1	1	-	-	-	-	
CO3	-	-	3	2	2	1	1	-	-	-	-	-	
CO4	2	1	2	2	1	1	-	1	-		-	-	
CO5	1	1	3	2	2	1	-	I	-	-	-	-	
Average	2.5	1.25	2.5	1.75	1.5	1.50	1	1	-			-	





## COURSE OUTCOME (2020-21)

### RCA-E21: CRYPTOGRAPHY AND NETWORK SECURITY

CO	CO Statement
CO1	Understand the fundamental design principles of current IP networks,.
CO2	Understand the Dijkstra and Bellman-Ford routing algorithms.
CO3	Configure Internet routers using several intra-domain routing protocols.
CO4	Demonstrate the network architecture for IP multicast and how IP multicast is distributed within a network.
CO5	Practically configure a network with label switching and traffic engineering using MPLS and RSVP.

		Ma	pping	of Cour	se Outo	comes v	vith Pro	gram (	Outcom	es		
		RCA-E										
PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1	-	2	-	1	1	-	-	_	_	
CO2	3	2	-	2	5-	2	1	1	-	-	-	-
CO3	-	-	3	2	2	1	1	<u> </u>	•	-	-	-
CO4	2	1	2	2	1	1	-	1	-	-		-
CO5	1	1	3	2	2	1	-	1	-	-	-	
Average	2.5	1.25	2.5	1.7 5	1.5	1.50	1	1		-	-	-





## COURSE OUTCOME (2020-21)

#### RCA551: COMPUTER GRAPHICS & ANIMATION LAB

CO	CO Statement
CO1	Analyze the algorithms related with the creation of two-dimensional object
CO2	Examine the techniques of two-dimensional objects transformations and splines
CO3	Evaluate polygon filling and clipping algorithms for two dimensional figures.

		Ma	apping o	of Cour	se Outo	comes v	vith Pro	gram (	Outcom	es			
	RCA551: COMPUTER GRAPHICS & ANIMATION LAB												
PO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	1	1	2	1	-	1	-	-	-	1	-	
CO2	3	1	-	-	2	-	1	-	-	-	1	-	
CO3	3	1	-	-	1	-	1	-	-	-	1	-	
Average	3	1	1	2	1.5	-	1	E=	-	-	1	-	



Director
R.B. C. Figure Duhai, Ghazlabad



### **COURSE OUTCOME (2020-21)**

#### RCA552: PROJECT BASED ON SOFTWARE ENGINEERING

CO	CO Statement								
CO1	Demonstrate the Software Engineering Life Cycle Models.								
CO2	Prepare a SRS document in line with the IEEE recommended standards.								
CO3	Outline the graphic representation of various UML diagrams and associations among them.								
CO4	Develop the project along with its report.								

	Mapping of Course Outcomes with Program Outcomes  RCA552: PROJECT BASED ON SOFTWARE ENGINEERING													
PO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	3	3	¥1	2	1	-	3	-	-	-	2	1		
CO2	2	3	-	-	-	-	-	-	3	•	2	-		
CO3	3	3	2	2	2	-	-:	-	3		2	-		
CO4	2	1	2	-	2	y.=	3	-	3	-	2	3		
Average	2.5	2.5	2	2	1.6		3	-	3	-	2	2		

