SAMPLE OF

LAB
MANUAL

R. D. ENGINEERING COLLEGE, DUHAI, GHAZIABAD

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

B.Tech Secend Year (Semesterlll)

Branch: CS/AIML/DS/1I0T
LAB MANUAL

Data Structure Lab Using C (KCS-351)

R.D. Engin® Zia
Duhai, Ghasi<

B. TECH (COMPUTER SCIENCE & ENGINEERING)

B. TECH(CSIT) 2" YEAR

SEMESTER-III

IH

- @ .5
: g = o=
Subiject w E Reciods ggif;zﬁm % E E géﬁ
ubjec . g | &) —| Total Credit
SN Code Subject e |3 . 5 %E SW+ESE| Cr
m
(@]
L|T|P| CT | TA | CT+TA TE/PE
Sﬁience Based Open
BOE3** / | Elective/BSC
i | BAS303 | (Mathslll/Math IV/ T ES/BS 3|11({0] 20 10 30 70 100 4
Math V)
Universal Human Value
d Professional
~ Bveso1/ | 2"
2 / Ethics/ T | VA/HS 211(0| 20 10 30 70 100 3
BAS301 :
Technical
Communication
3 BCs301 | Data Structure T PC |3|1|/0]| 20 | 10 30 70 100 4
Computer Organization
4 BCS302 | and T PC 3(1{0(| 20 10 30 70 100 4
Architecture
Discrete Structures &
5 BCS303 Theory of Logic T PC 2(1(0| 20 10 30 70 100 3
6 BCs351 | Data Structure Lab P pc |o|o]|2 50 50 50 100 1
Computer Organization
7 BCS352 | and P PC 0(0] 2 50 50 50 100 1.
B ’,L\ Architecture Lab
Web Designing
8 BCS353 Workshop P PC 0|0]|2 50 50 50 100 1
10 BCC301/ | Cyber Security/Python | o |y | 510 0| 20 | 20 30 70 100 2
BCC302 | programming
Internship Assessment
11 BCC351 P 100 100 2
/Mini Project*
Total 15|56 25

!
Director

R.D. Engineering College
Duhai, Ghaziabad

DATA STRUCTURER LAB (BCS-351) SYLLABUS

List of Experiments

S. PROGRAM NAME
NO.
1. To implement addition and multiplication of two 2D arrays.
2. To transpose a 2D array.
3. To implement insertion, deletion and traversal of an element into singly linked
list.
4. To implement stack using array.
. To implement Queue using array.
6. To implement Circular queue using array.
A To implement Linear Search.
8. To implement Binary Search.
9. To implement Bubble sort.
10. | To implement Selection sort.
MALUE ADDITION:
11. | To implement Insertion sort.
12. | To implement Quick sort.

Director
R.D. Engineering College
Duhai, Ghaziabad

DATA STRUCTURER LAB (BCS-351) TEXT/REFERENCE BOOKS
List of standard / text / reference books, other study material / Web links

sl

1 Horowitz and Sahani, “Fundamentals of Data Strucres”, Galgotia Publications Pvt Ltd Delhi
Book India.

2 | Book Rajesh K. Shukla, “Data Structure Using C and C++” Wiley Dreamtech Publication.

3 | Book Thareja, “Data Structure Using C” Oxford Higher Education.

4 | Website www.javatpoint.com/data-structure-tutorial/

5 | Website www.geeksforgeeks.org/data-structures/

Q%&ﬁ/

Dirzactor

R.D Engineering College
"“Duhali, Ghaziabad

BASIC COURSE RELATED TO LAB
1.To implement addition and multiplication of two 2D arrays.

Description:

Here A is a two — dimensional array with M rows and N columns and B is a two
rows and Y columns.

This algorithm adds these two arrays.
LIF(M #X) or (N #Y) Then
2. Print: Addition is not possible.
3. Exit [End of If]
4. Repeat ForI=1to M
m 5. Repeat ForJ=1to N
6. Set C[I][J] = A[I][J] + B[I][]]
[End of Step 5 For Loop]
[End of Step 6 For Loop]

7. Exit

Explanation: First, we have to check whether the rows of array A are equal to the rows of array B or the
columns of array A are equal to the columns of array B. if they are not equal, then addition is not possible

and the algorithm exits. But if they are equal, then first for loop iterates to the total number of rows i.e. M
and the second for loop iterates to the total number of columns i.e. N.

A step 6, the element A[I][J] is added to the element B[I][J] and is stored in C[I][J] by the statement: C[I1[7]
- Al + B[]

Multiply ():

Description: Here A is a two — dimensional array with M rows and N columns and B is a two — dimensional
array with X rows and Y columns.

This algorithm multiplies these two arrays.
LIEMM#Y) or (N # X) Then

2. Print: Multiplication is not possible.

3. Else

Direcilofl
R.D. Engineerng

4. Repeat ForI= l toN ['Juhay Lhalaue

5.Repeat ForJ =110 X

6. Set C[I][J]=0

7.Repeat ForK=1to Y

8. Set C[I][J] = C[1)[J] + A[I][K] * B[K][J]
[End of Step 7 For Loop]

[End of Step 5 For Loop]

[End of Step 4 For Loop]

[End of If]

9. Exit

1

Bie. X. In step 6, all the elements of C are set to zero. Then the third for loop iterates to total number of
columns of B i.e. Y. In step 8, the element A[I][K] is multiplied with B[K][J] and added to C[I][J] and the
result is assigned to C[I][J] by the statement:

CH)[I] = CM[I] + A[M[K] * B[K][J]

2.To transpose a 2D array.
Transnose():

Description: Here A is a two — dimensional array with M rows and N columns. This algorithm transposes
the array,

1. Repeat ForI=1to M
2.Repeat ForJ=1to N
3. Set B[J][I] = A[1][]]
[End of Step 2 For Loop]

[End of Step 1 For Loop]
4. Exit

Explanation:

m
The first for loop iterates from 1 to M i.e. total number of rows and second for loop iterates from 1 to N i.e.
total number of columns. In step 3, the element at locat

ion A[I][J] is assigned to B[J][I] by the statement
B[] = A[T](J].

Dire
R.D. Engineert’s © - d
~ " “buhai, Ghazia

3. To implement insertion, deletion and traversal of an element into

singly linked list.

A Linked List is a linear data structure which looks like a chain of nodes, where each node is a
different element. Unlike Arrays, Linked List elements are not stored at a contiguous location.

It is basically chains of nodes. each node contains information such as data and a pointer to the
next node in the chain. In the linked ljst there is a head pointer, which points to the first element
of the linked list, and if the list is empty then it simply points to null or nothing.

A singly linked list is a linear data structure in which the elements are not stored in contiguous
memory locations and each element is connected only to its next element using a pointer.

Head

H

Data Next

A node creation:

// A Single linked list node
class Node {

public:
int data;
Node* next; =
b s
o 2R
RD. g ng‘.n’;‘szor

4. To implement stack using array.

STACK: A stack is one of the most important and useful non-primitive linear data structure in computer
science. It is an ordered collection of items into which new data items may be added/inserted and from
which items may be deleted at only one end, called the top of the stack. As all the addition and deletion in a
stack is done from the top of the stack, the last added element will be first removed from the stack. That is
why the stack is also called Last-in-First-out (LIFO).

STACK USING ARRAYS

Implementation of stack using arrays is a very simple technique. Algorithm for pushing (or add or insert) a
new element at the top of the stack and popping (or delete) an element from the stack is given below.

Algorithm for push Suppose STACK[SIZE] is a one dimensional array for implementing the stack, which
will hold the data items. TOP is the pointer that points to the top most element of the stack. Let DATA is the
data item to be pushed.

1. If TOP = SIZE - 1, then:

(a) Display “The stack is in overflow condition”
(b) Exit

2. TOP=TOP + 1
3. STACK [TOP] = ITEM

4. Exit

Algorithm for pop Suppose STACK[SIZE] is a one dimensional array for implementing the stack, which
will hold the data items. TOP is the pointer that points to the top most element of the stack. DATA is the
popped (or deleted) data item from the top of the stack.

1. If TOP <0, then

Display “The Stack i ty”
A(a) isplay e Stack 1s empty

(b) Exit
0
2. Else remove the Top most element YA~
o rector
3. DATA = STACK[TOP] D neering College

4. TOP=TOP -1 5.Exit

5. To implement queue using array

Queue: We define a queue to be a list in which all additions to the list are made at one
end, and all deletions from the list are made at the other end. The element which is first
pushed into the order, the operation is first performed on that.

* A Queue is like a line waiting to purchase tickets, where the first person in line is
the first person served. (i.e. First come first serve).

« Position of the entry in a queue ready to be served, that is, the first entry that will
be removed from the queue, is called the front of the queue(sometimes, head of
the queue), similarly, the position of the last entry in the queue, that is, the one
most recently added, is called the rear (or the tail) of the queue.

‘Algorithm:

Check if the queue is already full by comparing rear to max - 1. if so, then return an overflow
error. If the item is to be inserted as the first element in the list, in that case set the value of
front and rear to 0 and insert the element at the rear end.

Otherwise keep increasing the value of rear and insert each element one by one having rear
as the index.

Step 1: IF REAR = MAX - |
™ Write OVERFLOW

Go to step

[END OF IF]
Step 2: IF FRONT = -1 and REAR = -]
SET FRONT = REAR =0

ELSE

SET REAR = REAR + |

[END OF IF]

Step 3: Set QUEUE[REAR] = NUM

Step 4: EXIT

6. To implement circular queue using array

CIRCULAR QUEUE In circular queues the elements Q[0],Q[1 1.Q[2] Q[n — 1] is represented in a
circular fashion with Q[1] following Q[n]. A circular queue is one in which the insertion of a new
element is done at the very first location of the queue if the last location at the queue is full. Suppose

Q is a queue array of 6 elements. Push and pop operation can be performed on circular. The
following figures will illustrate the same.

Inserting an element to circular Queue

1. Initialize FRONT =— 1; REAR = |
2. REAR =(REAR + 1) % SIZE
3. If (FRONT is equal to REAR) (a) Display “Queue is full” (b) Exit
4. Else (a) Input the value to be inserted and assign to variable “DATA”
5. If (FRONT is equal to — 1) (a) FRONT = 0 (b) REAR =0
6. QIREAR] = DATA

7. Repeat steps 2 to 5 if we want to insert more elements

8. Exit

Deleting an element from a circular queue

1. If (FRONT is equal to — 1) (a) Display “Queue is empty” (b) Exit
2. Else (a) DATA = Q[FRONT]

3. If (REAR is equal to FRONT) (a) FRONT = —1 (b) REAR = 1
4 Else (a) FRONT = (FRONT +1) % SIZE

’Tﬁlré:*or
R.D. Engineering Coléege
5. Repeat the steps 1, 2 and 3 if we want to delete more elements O Ghaziaba

6. Exit

We will use an array of fixed size and maintain two variables front (stores the index of the front element of the queue
) and rear (stores the index of last element in the queue). For enqueing (inserting)an element, we
increment rear and insert the element. If we have reached the end of the queue, then if there is a space available at
front (space might have been created due to some dequeue operation), the element can be inserted there also.
For dequeing (removing) an element, we increment front.

lll
7. To implement Linear Search.

Linear Search (Array A, Value x)

Step 1: Setito |

Step 2: if i > n then go to step 7

Step 3: if A[i] = x then 20 to step 6

Step 4: Setitoi+ |

Step 5: Go to Step 2

Step 6: Print Element x Found at index i and go to step &
Step 7: Print element not found

Step 8: Exit

[‘_‘\ir::z'f[‘j .
R.D. Engine
Duhai, Gh

8.To implement Binary Search.

In a binary search we use the information that all the elements are sorted
binarySearch(A, x):
n=len(A)
beg=0
end=n-1
result = -1
while (beg <= end):
mid = (beg + end) / 2
if (A[mid] <= x):

beg = mid + |
result = mid
Aelse:

end = mid — 1
return result

O

'

En,.
87,

lll

9. To implement Bubble Sorting.

The bubble sort makes multiple passes through a list. It compares adjacent items and exchanges those that

are out of order. Each pass through the list places the next largest value in its proper place. In essence, each
item “bubbles™ up to the location where it belongs.

procedure bubbleSort(A : list of sortable items)

n = length(A)
repeat
swapped = false
fori=1 to n-1 inclusive do

/* if this pair is out of order */
if A[i-1]> A[i] then
/* swap them and remember something changed */
swap(A[i-1], A[i])
swapped = true
end if
end for
until not swapped
end procedure

~

10. To implement Selection Sorting.

for i« 1ton-1do
min j « j;
min x « A[f]
forj«i+1tondo
If A[/] < min x then
minj < j
min x «— A[j]
A[minj] < A [i]
Ali] « minx

lll

\H

11. To implement Insertion Sorting

Insertion sort iterates. consuming one input element each repetition, and growing a sorted output list. Each
iteration, insertion sort removes one element from the input data, finds the location it belongs within the
sorted list, and inserts it there. It repeats until no input elements remain.

Sorting is typically done in-place, by iterating up the array, growing the sorted list behind it. At each array-
position. it checks the value there against the largest value in the sorted list (which happens to be next to it.
in the previous array-position checked). If larger, it leaves the element in place and moves to the next. If
smaller, it finds the correct position within the sorted list, shifts all the larger values up to make a space, and
inserts into that correct position.

The resulting array after & iterations has the property where the first k + 1 entries are sorted ("+1" because
the first entry is skipped). In each iteration the first remaining entry of the input is removed, and inserted
into the result at the correct position, thus extending the resul

M fori=1 to length(A) - 1

X = Ali]

j=i

while j > 0 and A[j-1] > x
Alj] = A[j-1]
j=j-1

end while

Afj] =¥

end for

Dn"ca"“(':(R
D. Enginesring uo\;—_ge
. Duhal Ghaziaba

!H

12.To implement Quick Sorting.

Quick Sort Algorithm

This article will be very helpful and interesting to students as they might face quicksort as a question in their
examinations. So, it is important to discuss the topic.

Sorting is a way of arranging items in a systematic manner. Quicksort is the widely used sorting algorithm
that makes n log n comparisons in average case for sorting an array of n elements. It is a faster and highly
efficient sorting algorithm. This algorithm follows the divide and conquer approach. Divide and conquer is a
technique of breaking down the algorithms into subproblems, then solving the subproblems, and combining
the results back together to solve the original problem.

Divide: In Divide, first pick a pivot element. After that, partition or rearrange the array into two sub-arrays
such that each element in the left sub-array is less than or equal to the pivot element and each element in the
right sub-array is larger than the pivot element.

Conquer: Recursively, sort two subarrays with Quicksort.

Combine: Combine the already sorted array.

Quicksort picks an element as pivot, and then it partitions the given array around the picked pivot element.
In quick sort, a large array is divided into two arrays in which one holds values that are smaller than the

specified value (Pivot), and another array holds the values that are greater than the pivot.

After that, left and right sub-arrays are also partitioned using the same approach. It will continue unti] the
single element remains in the sub-array.

Quick Sort

v

Pivot

Choosing the pivot

Picking a good pivot is necessary for the fast implementation of quicksort. However, it is typical to
determine a good pivot. Some of the ways of choosing a pivot are as follows —

(o]

o

(o]
Algori

Algo

0 XN U s LN

Pivot can be random, i.e. select the random pivot from the given array.

Pivot can either be the rightmost element of the leftmost element of the given array.

Select median as the pivot element.
thm

rithm:

- QUICKSORT (array A, start, end)
{
1 if (start < end)
2 {
3 p = partition(A, start, end)
4 QUICKSORT (A, start, p-1)
5 QUICKSORT (A, p + 1, end)
6}
}

Partition Algorithm:

The partition algorithm rearranges the sub-arrays in a place.

9,

- A

1
2
3
4,
B
6
7
8

PARTITION (array A, start, end)

1 pivot ? Alend]

27 start-1

3 for j ? start to end -1 {
4 do if (A[j] < pivot) {
Stheni?i+1

6 swap A[i] with A[j]

71

10. 8 swap A[i+1] with Alend]
11. 9 return i+1
12.}

U|

DATA STRUCTURE (BCS-351) LAB MANUAL

I. To implement addition and multiplication of two 2D arrays.

#include<stdio.h>

void Matrix Display(int al[l[20],int n)
{
int i,9;

for (1i=0; i<n; i++)

for(j=0; j<n; j++)

printf (" 24d",ali]l[j]);
}

printf ("\n");

}

fﬂ}

int main()
{
int n
int a
int b
int ¢

pPrintf ("\n Enter the dimensions of the
scanf ("%d", &n) ;

printf ("\n Enter elements of Matrix A:
Lor (i=0; i<n; i++)

for(j=0:; j<n: j++)

scanf ("&d", sa[i][j]):

printf ("\n Enter elements of Matrix B:
for (i=0; i<n; i++)

tor(3=0; j<n; j++)
scanf ("%d",&b([1][j]);

printf ("\n Matrix A: \n");
Matrix Display(a,n);

g ¥

2 Square matrices:

™Y

Y.z

printf ("\n\n Matrix B: \n"); Director o
- : . ineering
Matrix Display(b,n); ‘;Cbgﬁg‘Ghamabad
//Addition
for (i=0; i<n; i++)
(J=0; j<n; j++)

cli][J)1=ali] [J1+b[i][]];

printf("\n\n Addition of A and B gives:

Matrix Display(c,n);

xary;

//Subtraction

for(i=0; i<n; i++)
for(j=0; j<n; j++)
clil[jl=ali] [§1-b[i][§];

printf ("\n\n Subtraction of A and B gives: \n");
Matrix Display(c,n):

//Multiplication

for(i=0; i<n; i++)
for(j=0; j<n; j++)

{

cli][§1=0;

for (k=0; k<n; k++)

cli]l [J1+=ali]l [k]*b[k][j]:
}

printf ("\n\n Multiplication of A and B gives: \n");
Matrix Display(c,n);

2. To transpose a 2D array.

#include <stdio.h>

int main()

{
int a[1e][10], transpose[10][1@], r, c, i, i;
printf("Enter rows and columns of MaErLxs oy
scanf("%d %d", &r, &c);

// Storing elements of the matrix
printf("\nEnter elements of matrix:\n");
for(i=0; i<r; ++i)
for(j=8; j<c; ++3)
{ /
printf("Enter element a%d%d: Ty1%1; 9+41);
scanf("%d", &a[i][j]);

// Displaying the matrix al][] */
printf("\nEntered Matrix: \n");
for(i=8; i<r; ++i)

for(j=0; j<c; ++3)

{
printf("%d ", a[i][j]);
if (§ == c-1)
printf(“\n\n");
}

// Finding the transpose of matrix a

for(i=0; i<r; ++i)

Director o
j j R.D. Engineering College
(R A Duhai, Ghaziatbad

{
transpose[j]1[i] = a[i][]];

Y . - . A2zh -
o ER, SIS b ANy S -
(o ‘ e |
- a2 ex Sl L T ey war—

- [y
At ter) e b

SR TEP AT

..‘_rr 1 2 By ¥
o) : "
T

Sy

Direct

or
R.D. Engineering College
Duhai, Ghaz?abad

3. To implement insertion,
deletion, traversal of an element into

singly linked list.

#include<stdio.h>

struct node{

struct node *link;

int info;

b

struct node *start=NULL;

struct node* createNode(){

struct node *n;

n=(struct node *)=malloc(sizeof(struct node));
return (n);

}

void insertNode(){

struct node *temp, *t;
temp=createNode();
printf(“Enter a number”);
scanf(“%d”,&temp->info);
temp->link=NULL;
if(start==NULL)
start=temp;

else{

t=start;
while(t->link!=NULL){
t=t->link;

t->link=temp;

}
void deleteNode(){
struct node *r;
if(start==NULL)
printf(*List is empty™);
else{
I =start;
start=start->link;
free(r);
H
}

void viewList(){

struct node *t;
if(start==NULL)
printf(*List is empty™);
else{

t=start;
while(t!=NULL){
printf(**%d”,t->info);
t=t->link;

}

}

int menu(){

\H

lll

int ch;
printf(“\n 1. Add the value to the list);
printf(*\n 2. Delete first value®);
printf(*\n 3. View list *);
printf(*\n 4. Exit*);
printf(*\n 5. Enter your choice*);
scanf(“%d”,&ch);
return(ch);
}
void main(){
while(1){
clrser();
switch(menu()){
case 1: insertNode();
break;
case 2: deleteNode();
break;

case 3: viewList();

break;
DG
case 4: exit(0); ;?e,xo‘o Co\\gge
. . . neet7\a0?
default: printf(“Invalid choice™); @0 Ef\j“-;\r “Gnet
v

}
getch();
}
}

4. To implement Stack using Array.

#include<stdio.h>
#include<conio.h>
intstack[lOO],choice,n,top,x,i;
voidpush () ;
voidpop () ;
voiddisplay();
voidmain ()
{
lilelEseril) ;
top=-1;
printf ("\n Enter the size of STACK[MAX=100]:");
scanf ("%d", &n) ;
printf ("\n\t STACK OPERATIONS USING ARRAY") ;

printf ("\n\t—---oomm o _____ .
printf ("\n\t 1.PUSH\n\t 2.POP\n\t 3.DISPLAY\n\t 4 .EXIT");
do

{
printf("\n Enter the Choice:");
scanf ("%d", &choice) ;
switch(choice)

{
case 1:
{
push () ;
break;
}
case 2:
{
pop ()
break;
}
case 3:

{

display():
break;

}

case 4:

{
printf ("\n\t EXIT POINT ");
break;

}

default:

{
printf ("\n\t Please Enter a Valid Choice(1/2/3/4)");

}
getch () ;

}
while (choice!=4);
}
void push ()
{
if (top>=n-1)
{
printf ("\n\tSTACK is over flow") ;
getch();
}
else
{
printf (" Enter a value to be pushed:");
scanf ("%d", &x) ;
top++;
stack[top]=x;

}
voidpop ()
{
if (top<=-1)
{
printf ("\n\t Stack is under flow");
}

else

{

printf ("\n\t The popped elements is ¥d",stack([top])

top--;

}
voiddisplay()
{
if (top>=0)
{
printf ("\n The elements in STACK An") ;
for (i=top; i>=0; i--)
printf("\n%d",stack[i]);
printf ("\n Press Next Choice");
}
else
{
printf("\n The STACK is empty") ;

|

QUTPUT:

Enter the size of STACK[MAX=100]:10

STACK OPERATIONS USING ARRAY

1

2.POP
3.DISPLAY
4 .EXIT
Enter the Choice:l

Enter a value to be pushed:12

Enter the Choice:1
Enter a value to be pushed:24

Enter the Choice:1l
Enter a value to be pushed:98

Enter the Choice:3

The elements in STACK

98
24
12
Press Next Choice
Enter the Choice:2

The popped elements is 98
Enter the Choice:3

The elements in STACK

24
12
Press Next Choice
Enter the Choice:4

EXIT POINT

ﬂl

|

S. To implement queue using array.

#include<stdio.h>
#include<stdlib.h>
#define maxsize 5
void insert();
void delete();
void display();
int front = -1, rear = -1;
int queue[maxsize];
void main ()
{
int choice;
while(choice != 4)

{

H " FhEkkkdokkhkhkhhkhkhkhkkxhhkhkhkk H e ke e e o ook o ok o ok ok e ok ok sk ok e ok ke ok ok e ok ok ok ke
Printf("\n*** itk Main Menu \

printf("\n1.insert an element\n2.Delete an element\n3.Display the queue\
nd.Exit\n");
printf("\nEnter your choice 7");
scanf("%d",8choice);
switch(choice)
{
case 1:
insert();
break;
case 2:
delete();
break;
case 3:
display();
break;
case 4:
exit(0);
break;

default:
printf("\nEnter valid choice??\n");

}
}
}
void insert()
{
int item;

printf("\nEnter the element\n");
scanf("\n%d",&item);
if(rear == maxsize-1)

{
printf("\nOVERFLOW\n");
return;
}
if(front == -1 && rear == -1)
{
front = 0;
rear = Q;
}
else
{
rear = rear+1;
}

queue(rear] = item;
printf("\nValue inserted ");

}
void delete()
{
int item;
if (front == -1 || front > rear)
{
printf("\nUNDERFLOW\n");
return;

\H

else

{
item = queue[front];
if(front == rear)

{
front = -1;
rear = -1;
}
else
{
front = front + 1;
}
printf("\nvalue deleted ");
}
}
void display()
{
int i;
if(rear == -1)
{
printf("\nEmpty queue\n");
}
else < C
{ printf("\nprinting values\n"); DwrP:OF |
A = . I qineeri College
for(i=front;i<=rear;i++) R D[jsr:éi,reh;z?abgd g
{
printf("\n%d\n",queueli));
}
}

1
§=

1

!

B b ‘Jl;fb-’vg-wn-—%r»iu“- et
d JE-e T PREA et o e 3 e el

!

)

Tiedl & i+
m-‘x-}n: El-w"lu--- H B wasx l‘-on mgmnrm*un‘-ﬂ e

-|,f LE! -

\

]

-irr ""l..."‘,."l\hll »-. lf 5¢ -9,
bl et hawlpaebier ‘F-*»

T e Pt~

T Aot
oA

ETOEL U vt
DT agyT s AT

-

e '“-W"?'?“FM?"‘ o i |

6. To implement circular queue using array

#include<stdio.h>
#include<stdlib.h>
#define MAX 10

int cqueue_arrfMAX];
int front=-1;
int rear=-1;

void display();

void insert(int item);
int del();

int peek();

int isEmpty();

int isFull();

int main()
{
int choice,item;
while(1)
{
printf("\n1.Insert\n");
printf("2.Delete\n");
printf("3.Peek\n");
printf("4.Display\n");
printf("5.Quit\n");
printf("\nEnter your choice : ");
scanf("%d",&choice);

switch(choice)
{
case | :
printf("\nInput the element for insertion i -
scanf("%d",&item);
insert(item);
break;
case 2 :
printf("\nElement deleted is : %d\n",del());
break;
case 3:
printf("\nElement at the front is : %d\n",peek());
break;
case 4:
display();
break;
case 5:
exit(1);

default:
printf("\nWrong choice\n");
}/*End of switch*/
}/*End of while */

return 0;
$/*End of main()*/

void insert(int item)
{
if(isFull())
{
printf("\nQueue Overflow\n");
return;
}
if(front==-1)
front=0;

if(rear==MAX-1)/*rear is at last position of queue*/
rear=0;
else
rear=rear+];
cqueue_arr[rear]=item ;
}/*End of insert()*/

int del()

{
int item;
if(isEmpty())
{

printf("\nQueue Underflow\n");
exit(1);

}
item=cqueue_arr[front];
if(front==rear) /* queue has only one element */

{
front=-1;
rear=-1;

}

else if(front=MAX-1)
front=0;

else

front=front+1;
return item;
}/*End of del() */
int isEmpty()

if(front==-1)

return 1;
else
return 0;
}/*End of isEmpty()*/

int isFull()
{
if((front==0 && rear==MAX-1) [| (front==rear+1))
return 1;
else
return 0;
}/*End of isFull()*/

int peek()
{

if(isEmpty())
{

printf("\nQueue Underflow\n");
exit(1);

return cqueue_arr{front];
}/*End of peek()*/

void display()
{

int i;

if(isEmpty())
{

printf("\nQueue is empty\n");
return;
H
printf("\nQueue elements :\n"); -
i=front; DIr® ing C%4

. C\l‘-'r - 37 Al
1{f(front<=rear) _ DD%‘;\‘a\, Ghe

while(i<=rear)
printf("%d ",cqueue_arr[i++]);

else

while(i<=MAX-1)
printf("%d ",cqueue_arr[i++]);
i=0;
while(i<=rear)
printf("%d ",cqueue_arr[i++]);
}
printf("\n");

7. To implement Linear Search.

int main()
{
int array([100], search, Cr I}

printf ("Enter the number of elements in array\n") ;
scanf ("%d", &n) ;

printf ("Enter %d integer(s)\n", n);

{(c = 0; ¢ < n; c++)
scanf ("%d", &array(c]);

printf ("Enter the number to search\n");
scanf ("%d", &search):

(c = 0; c < n; c++)
(array[c] == search) /* 1f required element found */
printf ("¥d is present at location %d.\n", search, c+1);

break;
}

e == n)
rintf("%d is not present in array.\n", search);
p P Yy

n Q;

8. To implement Binary Search.

#include <stdio.h>

int main()

{

int ¢, first, last, middle, n, search, array[100];

printf ("Enter number of elements\n");
scanf ("%d", &n) ;

printf ("Enter %d integers\n", n);

(c = 0; ¢ € n; c++)
scanf ("%d", &array(c]);

printf("Enter value to find\n");
scanf ("%d", &search);

first = 0;
last = n - 1;
middle = (first+last)/2;

(Eirst <= last) {
if (array([middle] < search)
first = middle + 1;
else if (array[middle] == search) ({
printf("%d found at location %d.\n", search, middle+1);
break:;

last = middle - 1;:

middle = (first + last)/2:

(first > last)
printf("Not found! %d is not present in the list.\n", search);

0;

#include <stdio.h>

int main()
{
int array[100], n,

9. To implement Bubble Sorting

c, d, swap;

printf ("Enter number of elements\n");

scanf ("sd", &n):

printf ("Enter %d integers\n", n);

(c = 0; ¢ < n;

ct++)

scanf ("%d", &array(ec]);

(e=0; c < (

(array|[d]

swap =
array[d]
array[d+1]
}

t
printf("Sorted list

(e=0; ¢ <n

printf ("%d\n", array[c]);

return 0;

o =1 }; o++)

< n - ¢ - 1; d++)

> array[d+l]) /* For decreasing order

array|[d]:
array(d+1l];
swap;

in ascending order:\n");

;i Ct+)

10. To implement Selection Sorting

#include <stdio.h>
int main{()
{
int array[100], n, ¢, d, position, swap;

printf ("Enter number of elements\n");
scanf ("%d", &n);

printf ("Enter %d integers\n", n):

(e=0; c<n; ctt)

scanf ("%d", s&arrayl(c]):

position = c;

or (d=c +1 ; d<n; d++)

f (array[position] > arrayl(d])
position = d;
}
i1f (position != c)
{
swap = arraylc];
array[c] = array[position];
array[position] = swap;
}

}
printf ("Sorted list in ascending order:\n");

(o 0 ; c<n; ctt)
printf ("%d\n", arrayl(cl);

eturn 0;

D\(QT}?L college

R DDET\:\;'\GE;ﬁéi\aDad
Shai.

11. To implement Insertion Sorting

#include <stdio.h>

int main()

int n, array([1000], c, d, t:

printf ("Enter number of elements\n"):;
scanf ("%d", &n);

printf ("Enter #d integers\n", n);
for (e = 0; ¢ < n; c+t) |
scanf ("%d", &arrayl(cl);

(c =1; c <=n - 1; c++)

(d >0 && array[d-1] > array[d]) {
t = arrayl([d];
array[d] array(d-1];
array(d-1] €

d==

}

printf("Sorted list in ascending order:\n");
(c =0; c<=n-1; c++) {

printf ("%d\n", arraylc]);

0;

I

12. To implement Quick Sorting

#include <stdio.h>
#define max 10

int a[11] = { 10, 14, 19, 26, 27, 31, 33, 35, 42, 44, @ };
int b[1@];

void merging(int low, int mid, int high) {
int 11, 12, 43

for(11 = low, 12 = mid + 1, i = low; 11 <= mid && 12 <= high; i++) {
if(a[l1] <= a[l2])
b[i] = a[l1l++];
else
b[i] = a[l2++];
}

while(11 <= mid)
b[i++] = a[ll++];

while(12 <= high)
b[i++] = a[l2++];

for(i = low; i <= high; i++)
a[i] = b[i];
)

void sort(int low, int high) {
int mid;

if(low < high) {
mid = (low + high) / 2;
sort(low, mid);
sort(mid+1, high);
merging(low, mid, high);

} else {
return;

}

}

int main() {
int 1i;

printf("List before sorting\n");

for(i = ©; i <= max; i++)
printf("%d ", a[i]);

sort(@, max);

|ll

I

printf("\nList after sorting\n");

for(i = 9; i <= max; i++)
printf("%d ", a[i]);

Output e
List before sorting
10 14 19 26 27 31 33 35 42 44 9
List after sorting
© 10 14 19 26 27 31 33 35 42 44

R.D. Engl

< Q"», Ao -
e

‘ ;ac.’.ol'
D,:r;qri:1g College

Duhai, Ghaziabad

Viva Questions
1. What is data structure.
2. What is an algorithm.
3. What is time complexity.
4. What is space complexity.
5. What is the difference between linear and non-linear search.
6. What are the limitations of singly linked list.
7. What do you mean by overflow and underflow.
8. What is a priority queue.
9. List out few applications of tree data structure.
10. What is the difference between stack and queue.
11.What is a graph.
12.What is a spanning tree.
13. What do you mean by asymptotic notations.
14. Define time complexity of selection sort and quick sort.
15. What is the time complexity of bubble sort.
16. What is the difference between selection sort and insertion sort.
17. Are linked lists considered linear or non-linear data structure.

18. What are the advantages of a linked list over an array? In which
scenarios do we use linked list and when array?

19. Why do we need to do an algorithm analysis.

20. Where are stacks used.

21. What is sequential search. K
22. What are the types of hashing.
Ore =107 ~\\eq
23. Define hashing. O ering GO
rD. ENS Gnaz'?®

24. Advantage of quick sort.

25.Define hash table.

26.Define insertion sort.

27.Define radix sort.

28. What are the postfix and prefix forms of the expression.
29. How do you test for an empty queue.

30.What are the advantages of linked list.

\I\

